A CONCEPTUAL ANALYSIS OF THE RELATIVISTIC CLOCK PARADOX

Gergely Székely

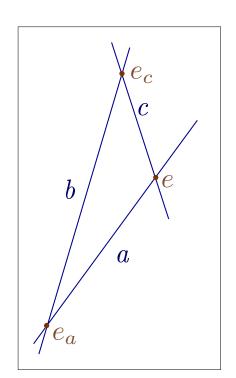
http://www.renyi.hu/~turms

CLOCK PARADOX



ClkP: $time_b(e_a, e_c) > time_a(e_a, e) + time_c(e, e_c)$

VARIANTS OF CLOCK PARADOX

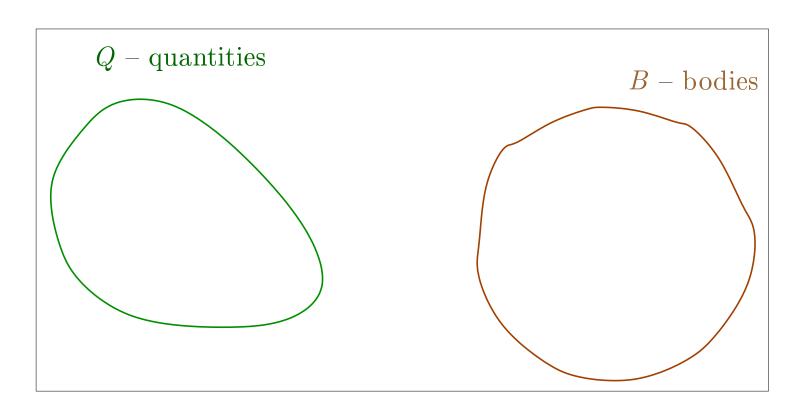


NoClkP: $time_b(e_a, e_c) = time_a(e_a, e) + time_c(e, e_c)$

 $\mathsf{AntiClkP}\colon \mathsf{time}_b(e_a,e_c) < \mathsf{time}_a(e_a,e) + \mathsf{time}_c(e,e_c)$

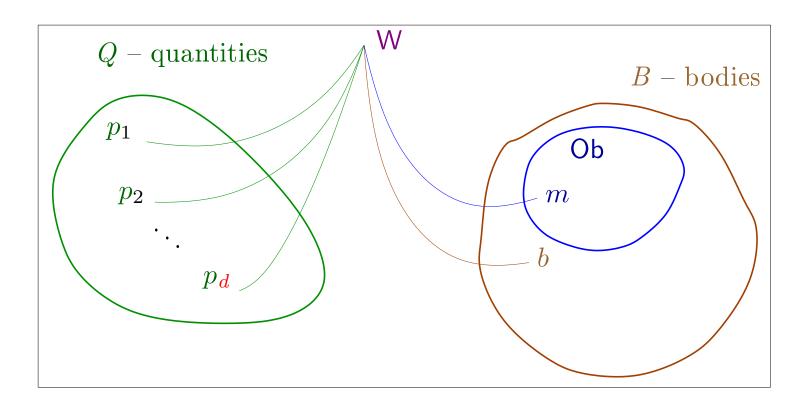
FIRST-ORDER LOGIC FRAMEWORK FOR SPACE-TIMES

Language: $\langle Q: ; B: ; \rangle$



Dimension of space-time: $d \geq 2$.

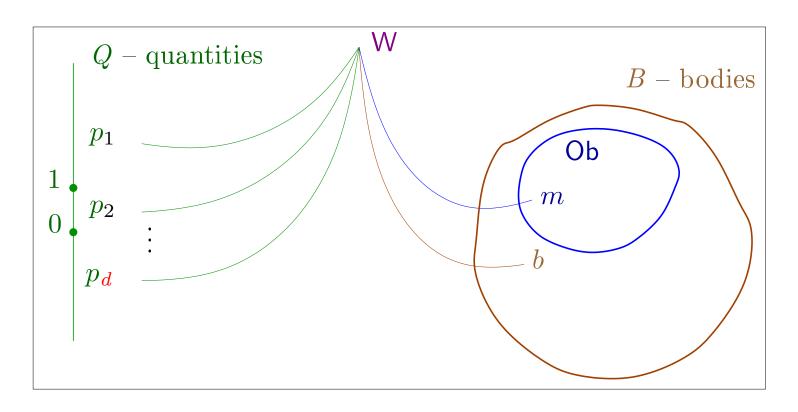
Language: $\langle Q: ; B: \mathsf{Ob} ; \mathsf{W} \rangle$



World-view relation: $W(m, b, \vec{p})$ – "Observer m coordinatizes body b at space-time location \vec{p} " (at time p_1 and space $\langle p_2 \dots p_d \rangle$)

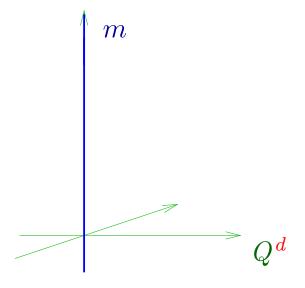
STRUCTURE OF QUANTITIES

Language: $\langle Q: \langle +, \cdot, 0, 1; B: \mathsf{Ob} \; ; \mathsf{W} \rangle$



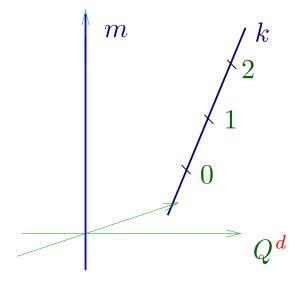
AxEOF: The quantity part $\langle Q; +, \cdot, <, 0, 1 \rangle$ is a Euclidean ordered field. (Positive elements have square roots.)

AXIOMS OF KINEMATICS



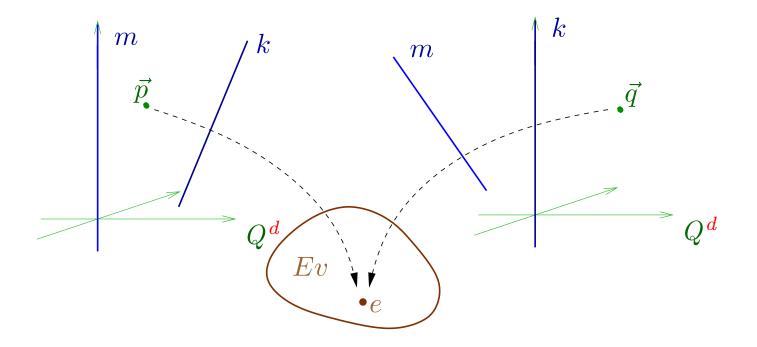
AxSelf: The observer are in rest according to themselves.

AXIOMS OF KINEMATICS



AxLinTime: The life-lines of observers are lines and time is passing uniformly on the life-lines.

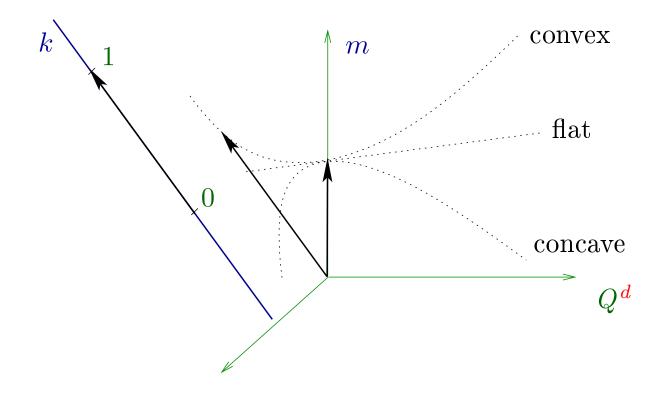
AXIOMS OF KINEMATICS



AxEv: Every observer coordinatize the same events.

 $Kinem_0 := \{AxEOF, AxSelf, AxLinTime, AxEv\}$

MINKOWSKI SPHERE



 MS_m is the set of time-unit vectors.

GEOMETRICAL CHARACTERIZATION

Theorem: Assume Kinem₀. Then

 $\forall m \in \mathsf{Ob} \ MS_m \text{ is convex} \implies \mathsf{ClkP},$

 $\forall m \in \mathsf{Ob} \ MS_m \text{ is flat} \qquad \Longrightarrow \mathsf{NoClkP},$

 $\forall m \in \mathsf{Ob}\ MS_m \text{ is concave } \implies \mathsf{AntiClkP}.$

GEOMETRICAL CHARACTERIZATION

Theorem: Assume Kinem₀+AxDispl. Then

$$\forall m \in \mathsf{Ob} \ MS_m \text{ is convex} \iff \mathsf{ClkP},$$

$$\forall m \in \mathsf{Ob} \ MS_m \text{ is flat} \iff \mathsf{NoClkP},$$

 $\forall m \in \mathsf{Ob}\ MS_m \text{ is concave } \iff \mathsf{AntiClkP}.$

AxDispl is technical axiom. It is used to displace observers in order to create twin paradox situations.

CONSEQUENCES NEWTONIAN KINEMATICS

AxUnivTime: The observers measure the same time between events.

Theorem: $A \times EOF + A \times UnivTime \models NoClkP$

CONSEQUENCES NEWTONIAN KINEMATICS

AxUnivTime: The observers measure the same time between events.

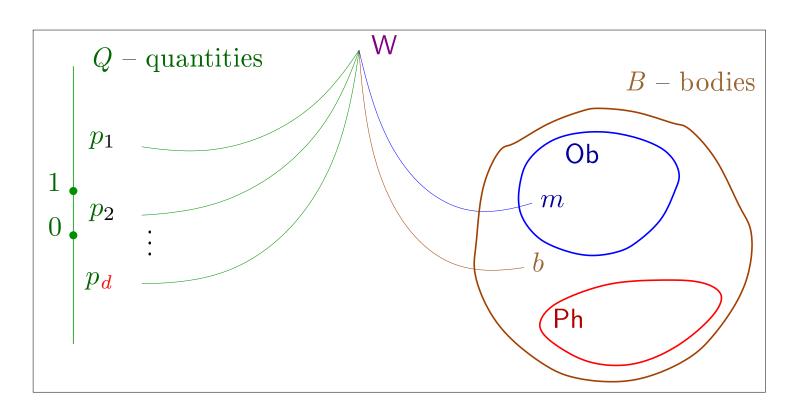
Theorem: $A \times EOF + A \times UnivTime \models NoClkP$

AxOb⁺: Observers can move in any direction with any finite speed.

Theorem: Kinem₀ + AxOb⁺ + NoClkP $\not\models$ AxUnivTime

SPECIAL RELATIVITY

Language: $\langle Q: <, +, \cdot, 0, 1; B: \mathsf{Ob}, \mathsf{Ph}; \mathsf{W} \rangle$



SPECIAL RELATIVITY

AxPh: For every observer, the speed of light is 1.

 $SpecRel_0^d := \{AxEOF, AxSelf, AxPh, AxEv\}$

SPECIAL RELATIVITY

AxPh: For every observer, the speed of light is 1.

$$SpecRel_0^d := \{AxEOF, AxSelf, AxPh, AxEv\}$$

We have to weaken $A \times Ob^+$ since $SpecRel_0^d$ implies the impossibility of faster than light motions for observers (if $d \ge 3$).

AxOb: Observers can move in any direction with any speed less than 1 (less that the speed of light).

SlowTime: Relatively moving observers' clocks slow down.

Thm($d \ge 3$): SpecRel $0 + AxLinTime + SlowTime <math>\models ClkP$

SlowTime: Relatively moving observers' clocks slow down.

Thm(
$$d \ge 3$$
): SpecRel $0 + AxLinTime + SlowTime $\models ClkP$$

Thm($d \ge 3$): SpecRel $0 + AxLinTime + AxOb + ClkP \neq SlowTime$

AxSimDist: If events e_1 and e_2 are simultaneous for both observers m and k, then m and k agree on the spatial distance between e_1 and e_2 .

Thm($d \ge 3$): SpecRel $0 + AxSimDist \models ClkP$

AxSimDist: If events e_1 and e_2 are simultaneous for both observers m and k, then m and k agree on the spatial distance between e_1 and e_2 .

Thm($d \ge 3$): SpecRel $0 + AxSimDist \models ClkP$

Thm($d \ge 3$): SpecRel $0 + AxLinTime + AxOb + ClkP <math>\not\models AxSimDist$

A QUESTION FOR FURTHER RESEARCH

Question: What is the logical connection between AxSimDist and SlowTime?

Remark: If $Q = \mathbb{R}$, then AxSimDist and SlowTime are equivalent in the models of SpecRel₀^d + AxLinTime + AxDispl + AxOb.