A sharpening of Tusnády’s inequality

Jenő Reiczigel1 Lídia Rejtő2,3 Gábor Tusnády3

November 24, 2011

Abstract
Let $\varepsilon_1, \ldots, \varepsilon_m$ be i.i.d. random variables with

$$P(\varepsilon_i = 1) = P(\varepsilon_i = -1) = 1/2,$$

and $X_m = \sum_{i=1}^m \varepsilon_i$. Let Y_m be a normal random variable with the same first two moments as that of X_m. There is a uniquely determined function Ψ_m such that the distribution of $\Psi_m(Y_m)$ equals to the distribution of X_m. Tusnády’s inequality states that

$$|\Psi_m(Y_m) - Y_m| \leq \frac{Y_m^2}{m} + 1.$$

Here we propose a sharpened version of this inequality.

AMS 2000 subject classification. Primary 62E17; secondary 62B15

Key words and phrases. Quantile transformation; normal approximation; binomial distribution; Tusnády’s inequality

1 Conjecture

Let $\varepsilon_1, \ldots, \varepsilon_m$ be i.i.d. random variables with

$$P(\varepsilon_i = 1) = P(\varepsilon_i = -1) = 1/2,$$

and $X_m = \sum_{i=1}^m \varepsilon_i$. Let Y_m be a normal random variable with the same first two moments as that of X_m. Using quantile transformation we can

1Szent István University, Department of Biomathematics and Informatics, Faculty of Veterinary Science, Budapest, Hungary
2University of Delaware, Statistics Program, FREC, CANR, Newark, Delaware, USA
3Alfréd Rényi Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary
see that there is a uniquely determined function Ψ_m such that the distribution of $\Psi_m(Y_m)$ equals to the distribution of X_m. The central limit theorem implies that the function Ψ_m is close to the identity for large m.

A sharp inequality of Tusnády [12] raised certain interest in the literature ([1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]).

Let us define the function f on the interval $(0,1)$ as

$$f(x) = \sqrt{(1 + x) \log(1 + x) + (1 - x) \log(1 - x)},$$

set $f(0) = 0$, $f(1) = \sqrt{\log(4)}$. Let us put

$$x_{k,m} = \frac{k - \frac{m}{2}}{\frac{m}{2}}$$

for positive even integers m with k such that $m/2 < k \leq m$, and set

$$p_{k,m} = P(X_m \geq 2k - m) = 2^{-m} \sum_{i=k}^{m} {m \choose i}.$$

Let us define the function Q on the reals as

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-u^2/2} du.$$

With those ingredients our conjecture states that

$$Q(\sqrt{m}f(x_{k,m})) < p_{k,m} < Q(\sqrt{m}f(x_{k-1,m}))$$

holds true for $\frac{m}{2} < k \leq m$. Or more sharply

$$2(k-1) - \frac{m}{2} + 0.8964 < mf^{-1}(Q^{-1}(p_{k,m})/\sqrt{m}) < 2(k-1) - \frac{m}{2} + 1.0000 \quad (1)$$

holds true with pessimal parameters $m = k = 10$. It implies that Tusnády’s inequality is sharpened to

$$\left| \Psi_m(Y_m) - mf^{-1}\left(\frac{Y_m}{m}\right) \right| < 1.1036.$$

2 Generalization

For an arbitrary random variable X let us consider the function on reals

$$R(t) = Ee^{tX}.$$
restricting ourselves for distributions having finite momentum generators. Next we define

\[\psi(t) = \frac{R'(t)}{R(t)}, \]

\[\alpha(x) = t \quad \text{iff} \quad \psi(t) = x, \]

\[\rho(x) = R(\alpha(x)) \exp(-x\alpha(x)). \]

The probability \(P(\sum_{i=1}^{m} X_i \geq mx) \) is approximately \(\rho(x)^{-m} \) if \(x > EX \). The function \(\rho \) depends on the distribution of \(X \), it is the Chernoff function of \(X \). Let us denote the Chernoff function of the distribution \(F \) of \(X \) by \(\rho_F \), and the corresponding function for standard normal by \(\rho_G \). The quantile transformation between the partial sums of distribution \(F \) with Gaussian ones resemble us to the equation

\[\rho_F(x) = \rho_G(y) \]

having the property that it gives sharp values for any \(m \). Perhaps the error term is bounded with a bound depending on the distribution of \(X \). For the case symmetrical binomial distribution the error term might be as small as that the quantile curve jumps over its limiting function: it is the informal explanation of our conjecture.

3 Numerical Illustration

The function \(\Psi_m \) is shown in Figure 1. called “step” for \(m = 50 \) with a rescaling for random variables

\[\xi_m = \frac{X_m}{m}, \quad \eta_m = \frac{Y_m}{m}. \]

The function \(f \) is called “limit”, for the sequence of step functions goes to \(f \) after rescaling. The conjecture comes from the observation that the limit function crosses all steps near to their middle. Let us introduce the blow up error term

\[\Delta_{k,m} = 10 \left(2k - 1 - m f^{-1} \left(\frac{1}{\sqrt{m}} Q^{-1} \left(\frac{m}{i=0} \left(\begin{array}{c} m \\ i \end{array} \right) 2^{-m} \right) \right) \right), \]

for \(0 < k \leq m/2 \). In Figure 1. it is labelled as ”Delta”. With these notations \(0 \) is equivalent with \(0 < \Delta_{k,m} < 1.036 \). These error terms are shown in Figure 2. for \(2 \leq m \leq 1000 \). Figure 2. prompts the conjecture that even these curves are convergent. We are a bit perplexed: even the inequality
$0 < \Delta_{1,2} < 1.036$ means that $Q(0.723359) < 0.25 < Q(0.6435214)$. How can we prove such an inequality theoretically?

ACKNOWLEDGEMENT: We thank to Peter Harremoës for pointing out a mistake in the earlier version of the paper.

References

4 Appendix

R- program of Figures 1 and 2.

Q=function(p) -qnorm(p)
G=function(x) (1+x)*log(1+x)+(1-x)*log(1-x))**0.5
Ginv=function(u) {
GG=function(x) G(x)-u
uniroot(GG,c(0,1),f.lower=-u,f.upper=log(4)^.5-u,tol=10^-100)
}

m=50; k=m/2
sum=0; divisor=2**m; bin=
xx=c(1:k+1); yy=c(1:k+1); zz=c(1:k+1);
for (i in 1:k-1){
sum=sum+bin
x=(m-2*i)/m
y=Q(sum/divisor)/(m**.5)
b=Ginv(y)$root
yy[i+1]=y; xx[i+1]=x
bin=(m-i)*bin/(i+1)
zz[i+1]=10*(m-2*i-1-m*b)
xx[k+1]=0; yy[k+1]=0; zz[k+1]=0
kerx=c(0,1.25); kery=c(0,1.15)
plot(kerx, kery, type="n",xlab="eta", ylab="xi",
main="Figure1. Quantile transform, its limit and blownup error, m=50")
for (i in 1:k){
bb=seq(from=yy[i+1], to=yy[i], by=0.01)
cc=bb*0+1; cc=cc*xx[i+1]
points(bb,cc,type="1", col="blue", lwd=2)
cc=seq(from=0, to=0.999, by=0.001)
bb=((1+cc)*log(1+cc)+(1-cc)*log(1-cc))**0.5
points(bb,cc, type="1", col="red", lwd=2)
points(yy,zz, type="1", col="green", lwd=2)
legend(locator(1),c("Limit","Step","Delta"),
lty=c(1,1,1),
col=c("red","blue","green"))
kerx=c(0,1.25); kery=c(0,1.15)
plot(kerx, kery, type="n", xlab="eta", ylab="Delta",
 main="Figure 2. The blownup error")

for (k in 1:500){m=2*k;
 sum=0; divisor=2**m; bin=1
 yy=c(1:k+1); zz=c(1:k+1);
 for (i in 1:k-1){
 sum=sum+bin
 y=Q(sum/divisor)/(m**.5)
 b=Ginv(y)$root
 yy[i+1]=y;
 bin=(m-i)*bin/(i+1)
 zz[i+1]=10*(m-2*i-1-m*b)}
 yy[k+1]=0; zz[k+1]=0
 if (k<100) clr="red" else
 if (k<200) clr="blue" else
 if (k<300) clr="purple" else clr="green"
 points(yy,zz, type="l", col=clr)}
legend(locator(1),c("0<m <= 200","200<m<=400","400<m<=600",
 "600<m<=800","800<m<=1000"),
 lty=c(1,1,1,1,1),
 col=c("red","blue","purple","gray","green"))
Figure 1. Quantile transform, its limit and blown up error, $m=50$

- η
- ξ
- Limit
- Step
- Delta

Graph showing the quantile transform, its limit, and blown up error for $m=50$.
Figure 2. The blownup error