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ABSTRACT. We investigate families of subsets ofωwith almost disjoint refine-
ments in the classical case as well as with respect to given ideals on ω. More
precisely, we study the following topics and questions:

1) The existence of perfect I-almost disjoint (I-AD) families; and the exis-
tence of a “nice” ideal I on ω with the property: Every I-AD family is count-
able but I is nowhere maximal.

2) Examples of projective ideals.
3) The existence of (I, Fin)-almost disjoint refinements of families of I-

positive sets in the case of everywhere meager (e.g. analytic or coanalytic)
ideals. We show that under Martin’s Axiom if I is an everywhere meager ideal
and H ⊆ I+ with |H| < c, then there is a family {AH : H ∈H} ⊆ I+ such that
(i) AH ⊆ H for every H and (ii) AH0

∩ AH1
∈ I is finite for every two distinct

H0, H1 ∈H.
4) We prove the following generalization of a result due to J. Brendle:

If V ⊆ W are transitive models, ωW
1 ⊆ V , P(ω) ∩ V 6= P(ω) ∩W , and I is

an analytic or coanalytic ideal coded in V , then there is an I-almost disjoint
refinement (I-ADR) of I+ ∩ V in W , that is, a family {AX : X ∈ I+ ∩ V} ∈ W
such that (i) AX ⊆ X , AX ∈ I+ for every X and (ii) AX ∩AY ∈ I for every distinct
X and Y .

5) Connections between classical properties of forcing notions and adding
mixing reals (and mixing injections), that is, a (one-to-one) function f :ω→
ω such that | f [X ] ∩ Y | = ω for every X , Y ∈ [ω]ω ∩ V . This property is
highly relevant concerning almost disjoint refinements because it is very easy
to find an almost disjoint refinement of [ω]ω ∩ V in every extension V ⊆ W
containing a mixing injection over V .

1. INTRODUCTION

Let us begin with our motivations which led us to work on almost disjoint
refinements and their generalizations. First of all, the following easy fact seems
to be somewhat surprising (see also Proposition 1.7):
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Fact 1.1. If H ⊆ [ω]ω( = {X ⊆ ω : |X | = ω}) is of size < c, then H has an
!Z!almost-disjoint refinement {AH : H ∈ H}, that is, (i) AH ∈ [H]ω for every
H ∈H and (ii) |AH ∩ AK |<ω for every H 6= K from H.

The following theorem due to B. Balcar and P. Vojtáš is probably the most
well-know general result on the existence of almost-disjoint refinements.

Theorem 1.2. (see [BaV80]) Every ultrafilter onω has an almost-disjoint refine-
ment.

B. Balcar and T. PazĂĄk !Z!, and independently J. Brendle !Z! proved the
following theorem: !Z!

Theorem 1.3. (see [BaP10], [LS08]) Assume that V ⊆ W are transitive models
and P(ω) ∩ V 6= P(ω) ∩W. Then [ω]ω ∩ V has an almost-disjoint refinement
in W (where by transitive model we mean a transitive model of a “large enough”
finite fragment of ZFC).

One of our main results is a generalization of this !Z! theorem in the context
of “nice” ideals on ω, that is, we change the notion of smallness in the setting
above by replacing finite with element of an ideal I. !Z!

In order to formulate our generalization, we have to introduce some nota-
tions and the appropriate versions of the classical notions.

Let I be an ideal on an infinite set X . We always assume that [X ]<ω = {Y ⊆
X : |Y | < ω} ⊆ I and X /∈ I. Let us denote by I+ = P(X ) \ I the family of
I-positive sets, and by I∗ = {X \ A : A ∈ I} the dual filter of I. If Y ∈ I+ then let
I � Y = {A∈ I : A⊆ Y }= {B∩ Y : B ∈ I} be the restriction of I to Y (an ideal on
Y ). The ideal of finite subsets of X will be denoted by Fin.

Definition 1.4. We say that a non-empty family A ⊆ I+ is I-almost-disjoint (I-
AD) if A∩B ∈ I for every two distinct A, B ∈A. A family A ⊆ I+ is an (I, Fin)-AD
if |A∩ B|<ω for every two distinct A, B ∈A.

Definition 1.5. Let H ⊆ I+. We say that a family A = {AH : H ∈ H} is an
I-AD refinement (I-ADR) of H if A is I-AD and AH ⊆ H, AH ∈ I+ for every H. If
I= Fin we simply say AD-refinement (ADR).

We say that a family A = {AH : H ∈H} is an (I, Fin)-AD refinement ((I, Fin)-
ADR) of H if A is an I-ADR, moreover |AH∩AS|<ω for every distinct H, S ∈H.

Notice that an ideal on a countable set X can be regarded as a subset of the
Polish space 2ω using a bijection between X and ω. Thus, it makes sense to
talk about Borel, analytic etc ideals or certain descriptive properties of an ideal,
such as Baire property or meagerness (it is easy to see that these properties
does not depend on the choice of the bijection). We say that an ideal I on ω is
everywhere meager if I � X is meager in P(X ) for every X ∈ I+.

Now we can formulate our generalization.

Theorem 1.6. Assume that V ⊆W are transitive models, ωW
1 ⊆ V , P(ω)∩ V 6=

P(ω) ∩W, and I is an analytic or coanalytic ideal coded in V . Then there is an
I-ADR of I+ ∩ V in W.
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Clearly, if I is an ideal on ω then there is a family (e.g. I+) of size c which
does not have any I-ADR’s. Conversely, we have the following very special case
of results from [BgHM84] and [BaSV81]:

Proposition 1.7. If I is an everywhere meager ideal and H ∈ [I+]<c, then H has
an I-ADR.

Proof. LetH = {Hα : α < κ}. Applying Corollary 1.11, we can fix an I-AD family
A= {Aξ : ξ < κ+} on H0 and for every β < κ let Tβ = {ξ < κ+ : Hβ ∩Aξ ∈ I+},
furthermore let R = {β < κ : |Tβ | ≤ κ} (we know that 0 /∈ R). By induction on
α ∈ κ \ R we can pick a

ξα ∈ Tα \
� ⋃

β∈R

Tβ ∪
�

ξα′ : α′ ∈ α \ R
	

�

because |Tα| = κ+ and |
⋃

{Tβ : β ∈ R}| ≤ κ, and let Eα = Hα ∩ Aξα ∈ I+. Then
the family {Eα : α ∈ κ \ R} is an I-ADR of {Hα : α ∈ κ \ R}. We can continue
the procedure on {Hβ : β ∈ R} because Eα ∩ Hβ ∈ I for every α ∈ κ \ R and
β ∈ R. �

This Proposition motivates the following:

Question 1.8. Let I be an everywhere meager ideal and H ∈ [I+]<c. Does H
have an (I, Fin)-ADR?

We consistently answer this question proving the following.

Theorem 1.9. Assume MAκ and let I be an everywhere meager ideal, then every
H ∈ [I+]≤κ has an (I, Fin)-ADR.

Our other aim was to investigate certain definable (e. g. Borel, analytic,
coanalytic etc.) ideals. In the past two decades the study of such ideals has be-
come a central topic in set theory. It turned out that they play an important role
in combinatorial set theory, in the theory of cardinal invariants of continuum,
as well as, in the theory of forcing (see e.g. [Ma91], [So99], [F], [Hr11] and
many other publications).

The following characterisation theorem is due to Sierpiński ((1)↔(2)) and
Talagrand ((2)↔(3)), for the proofs see e.g. [BrJ, Thm 4.1.1-2].

Theorem 1.10. Let I be an ideal on ω. Then the following are equivalent: (1) I
has the Baire property, (2) I is meager, and (3) there is a partition {Pn : n ∈ ω}
of ω into finite sets such that {n ∈ω : Pn ⊆ A} is finite for each A∈ I.

From now on, when working with partitions of a set, we always assume that
every element of the partition is nonempty.

For example, analytic and coanalytic ideals are everywhere meager, because
their restrictions are also (co)analytic hence satisfy the Baire property, and so
these restrictions are meager by Theorem 1.10 above. From this theorem we
can also deduce the following important corollary.
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Corollary 1.11. If I is a meager ideal, then there is a perfect (I, Fin)-AD family.
In particular, if I is everywhere meager, then there are perfect (I, Fin)-AD families
on every X ∈ I+.

Proof. It is easy to define a perfect AD family A onω (e.g. consider the branches
of 2<ω in P(2<ω)). Fix a partition (Pn)n∈ω ofω into finite sets such that {n ∈ω :
Pn ⊆ A} is finite for every A∈ I. For each A∈A let A′ =

⋃

{Pn : n ∈ A} ∈ I+, and
let A′ = {A′ : A ∈ A}. Then |A′ ∩ B′| < ω for every two distinct A, B ∈ A hence
A′ is an (I, Fin)-AD family. The function P(ω)→ P(ω), A 7→ A′ is injective and
continuous hence A′ is perfect. �

Concerning the reverse implications of this corollary, we prove the following.

Theorem 1.12. (a) The existence of perfect (I, Fin)-AD families does not im-
ply that I is meager.

(b) If b = c then there is an non-meager ideal I such that there are perfect
(I, Fin)-AD families on every X ∈ I+. Here c stands!Z! for the continuum
and b for the bounding number, that is, b = min{|F | : F ⊆ ωω is ≤∗-
unbounded} where f ≤∗ g iff the set {n ∈ω : f (n)> g(n)} is finite.

(c) There is an ideal I such that every I-AD family is countable but I is nowhere
maximal, that is, I � X is not a prime ideal for any X ∈ I+ (in particular
there are infinite I-AD families).

(d) It is independent from ZFC whether the example in (c) can be chosen as
Σ∼

1
2.

We also define new notions of mixing and injective mixing reals, and in-
vestigate connections between these new notions and classical properties of
forcing notions (such as adding Cohen/random/splitting/dominating reals and
Laver/Sacks-properties).

Definition 1.13. Let P be a forcing notion. We say that an f ∈ ωω ∩ VP is a
mixing real over V if | f [X ]∩Y |=ω for every X , Y ∈ [ω]ω∩V . If f is one-to-one,
then we call it an injective mixing real or mixing injection.

Our results are summarized in the following proposition.

Proposition 1.14. Let P be a forcing notion.

(i) If P adds random reals then it adds mixing reals.
(ii) If P adds dominating reals, then it adds mixing reals.

(iii) If P adds Cohen reals then it adds mixing injections.
(iv) If P adds mixing injections then it adds unbounded reals.
(v) If P has the Laver-property, then it does not add injective mixing reals.

Our paper is organized as follows. In Section 3 we prove Theorem 1.12, as
well as study some problems concerning the possible generalizations of Corol-
lary 1.11 on the second level of the projective hierarchy. In Section 4 we present
a plethora of examples of Borel and projective ideals on ω. In Section 5 we
show Theorem 1.9. In Section 6 by modifying Brendle’s proof of Theorem 1.3,
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we prove Theorem 1.6. In Section 7 we study the notions of mixing and injec-
tive mixing reals. Finally, in Section 8, we list some open questions concerning
our results.

2. PRELIMINARIES AND BASIC FACTS

As usual, Σ∼
0
α,Π∼

0
α will stand for the αth level of the Borel hierarchy while

we denote by Σ∼
1
n,Π∼

1
n the levels of the projective hierarchy. If r is a real, the

appropriate relativised versions are denoted by Σ0
α(r),Π

0
α(r) etc.

Suppose that I is an ideal on the set X . As mentioned before, if X is countable
then we can talk about complexity of ideals: I is Fσ, Σ∼

0
α, Π∼

1
n etc if I ⊆ P(X )' 2X

is an Fσ, Σ∼
0
α, Π∼

1
n etc set in the usual compact Polish topology on 2X . If we fix

a bijection between ω and X we can define the collection of Σ0
α(r),Π

0
α(r) etc

subsets of 2X as well. If X = ωn then the we will always assume that the
bijection is the usual, recursive one.

For example, Fin= [ω]<ω is an Fσ ideal, Z= {A⊆ω : |A∩ n|/n→ 0} is Fσδ,
and Conv = {A ⊆ Q ∩ [0,1] : A has only finitely many accumulation points} is
Fσδσ etc (see more examples in Section 4). Similarly, we can associate descrip-
tive complexity to any X ⊆ P(ω), and we can also talk about Baire property and
measurability of subsets of P(ω). Clearly, if Y ∈ I+ then I � Y belongs to the
same Borel or projective class in P(Y ) as I in P(ω) (simply because I � Y is a
continuous preimage of I).

For a family H ⊂ 2X we will denote by id(H) the ideal generated by the sets
in H.

We say that an ideal I on ω is

• tall if every infinite subset of ω contains an infinite element of I;
• a P-ideal if for every sequence An ∈ I (n ∈ ω), there is an A ∈ I such

that An ⊆∗ A for every n, that is, |An \ A|<ω for every n.

We will need the following two fundamental results of descriptive set theory
(see e.g. in [J]):

Theorem 2.1. (Shoenfield Absoluteness Theorem) If V ⊆W are transitive mod-
els, ωW

1 ⊆ V , and r ∈ ωω ∩ V , then Σ1
2(r) formulas are absolute between V and

W.

Corollary 2.2. If X ⊆ P(ω) is an analytic or coanalytic set in the parameter
r ∈ωω, then the statement “X is an ideal” is absolute for transitive models V ⊆W
with ωW

1 ⊆ V and r ∈ V .

Proof. Let ϕ(x , r) be a Σ1
1(r) or Π1

1(r) definition of X (r ∈ ωω). Then the
statement “X is an ideal” is the conjunction of the following formulas (i) ∀
a ∈ Fin ϕ(a, r), (ii) ∀ x , y (x * y or ¬ϕ(y, r) or ϕ(x , r)), and (iii) ∀ x , y
(¬ϕ(x , r) or ¬ϕ(y, r) or ϕ(x ∪ y, r)). In particular, “X is an ideal” is Π1

2(r) and
hence we can apply the Shoenfield Absoluteness Theorem. �
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Theorem 2.3. (Mansfield-Solovay Theorem) If A * L[r] is a Σ1
2(r) set, then A

contains a perfect subset.

Other than these, we will use descriptive set theoretic tools such as Γ -completeness,
Γ -hardness etc, which all can be found in [K].

Let Tree= {T ⊆ω<ω : T is a tree} be the usual Polish space of all trees on ω
(a closed subset on P(ω<ω)) and as usual, we denote by [T] = {x ∈ ωω : ∀ n
x � n ∈ T}, the branches of T .

In Section 7 we will heavily use standard facts about forcing notions, for the
details see [BrJ].

3. ON THE EXISTENCE OF PERFECT (I, Fin)-AD FAMILIES

First of all, we show that the reverse implication in the first part of Corollary
1.11 does not hold.

Example 3.1. The assumption that there is a perfect (I, Fin)-AD family does not
imply that I is meager: Fix a prime ideal J onω. For every partition P = (Pn)n∈ω
of ω into finite sets, fix an XP ∈ [ω]ω such that AP =

⋃

{Pn : n ∈ XP} ∈ J

(notice that J cannot be meager); and let I be an ideal on 2<ω be generated
by the sets of the form A′P =

⋃

{2k : k ∈ AP}. It is easy to see that the set
{{ f � n : n ∈ω} : f ∈ 2ω} of branches of 2<ω is a perfect !Z! AD family. Clearly,
a set of the form { f � n : n ∈ ω} contains elements with domain n for every
n ∈ω, while for every A′P we have that the set {dom(x) : x ∈ A′P} ∈ J. Thus, a
set of the form { f � n : n ∈ω} cannot be an element of the ideal. So we obtain
that the family {{ f � n : n ∈ω} : f ∈ 2ω} is a perfect (I, F in)-AD family.

I is not meager: Assume the contrary, then by Theorem 1.10 there exists a
partition Q = (Qn)n∈ω of 2<ω into finite sets such that {n ∈ω : Qn ⊆ A} is finite
for every A∈ I. Then there is a partition P = (Pn)n∈ω of ω into finite sets such
that for every n there is an!Z! m with Qm ⊆

⋃

{2k : k ∈ Pn}. We know that
A′P ∈ I, a contradiction because A′P contains infinitely many Qm’s.

What can we say if there are perfect (I, Fin)-AD families on every X ∈ I+? In
this case we have only consistent counterexamples.

Theorem 3.2. Assume that b = c. Then there is a non-meager ideal I on ω such
that there are perfect (I, Fin)-AD families on every X ∈ I+.

Proof. Let [ω]ω = {Xα : α < c} and {partitions of ω into finite sets} = {Pα =
(Pαn )n∈ω : α < c} be enumerations. We will construct the desired ideal I as an
increasing union

⋃

{Iα : α < c} of ideals by recursion on α < c. At the αth stage
we will make sure that

(i) |Iα| ≤ |α|+ω ????IS IT CORRECT TO USE Iα INSTEAD OF A GENER-
ATING SET?;

(ii) Pα cannot witness that Iα is meager;
(iii) either Xα belongs to Iα or there is a perfect (Iα, Fin)-AD family on Xα;
(iv) we do not destroy the (Iβ , Fin)-AD families we may have constructed

in previous stages.
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Let I0 = Fin and fix a perfect AD family A0 on X0. At stage α > 0 we already
have the ideals Iβ for every β < α, let I<α =

⋃

{Iβ : β < α}. We also have
perfect (I<α, Fin)-AD families Aβ on Xβ ∈ I+<α for certain β ∈ Dα ⊆ α.

If we can add Xα to I<α, that is, Aβ ∩ id(I<α ∪ {Xα}) = ; for every β ∈ Dα
!Z!, then let I′α = id(I<α ∪ {Xα}) and D′α = Dα.

Suppose that we cannot add Xα to I<α, that is, Aβ ∩ id(I<α ∪ {Xα}) 6= ; for
some β ∈ Dα. Since I<α is generated by < b = c many sets it is an everywhere
meager ideal (see [So77] or [Bl10, Thm. 9.10]). We can apply Corollary 1.11
to obtain a perfect (I<α, Fin)-AD family Aα on Xα, let I′α = I<α, and let D′α =
Dα ∪ {α}.

Fix a partition Q = (Qn)n∈ω !Z! of ω into finite sets !Z! such that {n ∈ ω :
Qn ⊆ A} is finite for every A∈ I′α (we know that I′α is meager).

Claim. There exist partitions Qβ ,B = (Q
β ,B
n )n∈ω for every β ∈ D′α and B ∈ I′α

such that A∩Qβn \ B 6= ; for every A∈Aβ , B ∈ I′α, and n ∈ω.
Proof. Let β ∈ D′α and B ∈ I′α. We know that Aβ is compact as a subset of

P(ω). Basic open sets in P(ω) are of the form [s, t] = {A ⊆ ω : s ∩ A = ; and
t ⊆ A} for disjoint, finite s, t ⊆ ω. Then Aβ ⊆

⋃

{[;, {n}] : n ∈ ω \ B} because
A\B is infinite for every A∈Aβ . Therefore Aβ ⊆

⋃

{[;, {n}] : n ∈ N0 \B} for an

N0 ∈ω, in particular, A∩N0\B 6= ; for every A∈Aβ . Let Qβ ,B
0 = [0, N0). We can

proceed by the same argument: Aβ ⊆
⋃

{[;, {n}] : n ∈ [N0,ω) \ B} hence there
is an N1 > N0 such that Aβ ⊆

⋃

{[;, {n}] : n ∈ [N0, N1) \ B}, in other words,

A∩ [N0, N1) \ B 6= ; for every A∈Aβ . Let Qβ ,B
1 = [N0, N1) etc. �

Now we have the family Q = {Pα} ∪ {Q} ∪ {Qβ ,B : β ∈ D′α, B ∈ I′α}!Z! of
partitions and |Q| < c = b. Hence there is a partition R = (Rm)m∈ω which
dominates all of these partitions, that is, ∀ P = (Pn)n∈ω ∈ Q ∀∞ m ∃ n Pn ⊆ Rm
(see [Bl10, Thm. 2.10]). Let Y =

⋃

{R2n : n ∈ω} and Iα = id(I′α ∪ {Y }).
Then (i) is clearly satisfied, in order to see (ii) notice that by the fact that the

partition Rm was dominating and Pα ∈ Q, for almost every m there exists an n
with Pαn ⊂ R2m. Condition (iii) is also clear if Xα ∈ I′α.

If Xα 6∈ I′α then by definition α ∈ D′α so to see (iii) and (iv) we have to show
that for every β ∈ D′α the family Aβ is not just an (I′α, F in)-AD family, but also
an (Iα, F in)-AD family. In other words, it is enough to check that for every
A ∈ Aβ we have A \ (B ∪ Y ) 6= ; for every B ∈ I′α. Let B ∈ I′α. Then for almost

every m, there is an nm such that Qβ ,B
nm
⊆ R2m+1, and by the claim we know that

A∩Qβ ,B
nm
\ B 6= ;. Therefore, A\ (B ∪ Y ) is infinite, hence Aβ ∩ Iα = ; for every

β ∈ D′α. �

What can we say about ideals on the second level of the projective hierarchy,
do there always exist perfect or at least uncountable (I, Fin)-AD families? If all
Σ∼

1
2 andΠ∼

1
2 sets have the Baire property, then of course, yes because then Σ∼

1
2 and

Π∼
1
2 ideals are meager and we can apply Corollary 1.11. On the other hand, there

is a Σ1
2 (i.e. ∆1

2) prime ideal Isn’t this well known?Citation? I in L: Using a∆1
2-

good well-order ≤ on P(ω), by the most natural recursion, extending our ideal
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with a≤-minimal element at every stage (and avoiding universal quantification
by applying goodness), we obtain such an ideal. Clearly, every I-AD family is a
singleton.

Similarly, we can construct a Σ1
2-ideal J in L such that there are infinite J-AD

families but all of them are countable: Copy the above ideal I to the elements
of a partition {Pn : n ∈ω} ⊆ [ω]ω of ω, and let J be the generated ideal.

This last example is very artificial in the sense that, this ideal is constructed
from maximal ideals in!Z! a very “obvious” way, many of its restrictions are
prime ideals. However, we can construct even more peculiar ideals:

Proposition 3.3. Suppose that there exists a∆∼
1
n ultrafilter onω for some n. Then

there exists a ∆∼
1
n ideal such that it is nowhere maximal but every I-AD family is

countable. In particular, there exists such a ∆∼
1
2 ideal in L.

Proof. LetU be an!Z! ultrafilter and defineµ : P(ω)→ [0, 1] asµ(A) = limU
|A∩n|

n
where limU stands for the U-limit operation on sequences in topological spaces,
that is, limU(an) = a iff {n ∈ ω : an ∈ V} ∈ U for every neighbourhood V of
a. It is easy to see that if {an : n ∈ω} is compact, then limU(an)n∈ω exists, in
particular, µ is defined on every A ∈ P(ω). It is also straightforward to show
that µ is a finitely additive non-atomic probability measure on P(ω), that is,
µ(;) = 0, µ(A∪ B) = µ(A) + µ(B) if A∩ B = ;, µ(ω) = 1, and if µ(X ) = ε > 0
then for every δ ∈ (0,ε) there is a Yδ ⊆ X with µ(Yδ) = δ.

Let I = {A ⊆ ω : µ(A) = 0}. Then I is an ideal. I is nowhere maximal
because of µ is non-atomic (in particular, there are infinite I-AD families). We
show that every I-AD family is countable. If there was an uncountable I-AD
family A, then An = {A ∈ A : µ(A) > 1/n} would be uncountable for some
n ∈ ω and therefore among every n many element of An there would be two
with I-positive intersection.

Notice that if U is ∆∼
1
n (n ≥ 2) then I is also ∆∼

1
n because A ∈ I iff ∀ k ∈ ω

{n ∈ ω : |A∩ n|/n < 2−k} ∈ U, and the function A 7→ {n ∈ ω : |A∩ n|/n < 2−k}
is continuous (for every k). �

4. EXAMPLES OF BOREL AND PROJECTIVE IDEALS

There are several classical examples of Borel ideals, here we present some
of them which have easily understandable definitions, and the reader can see
that these examples are motivated by a wide variety of backgrounds. For the
important roles of these ideals, especially in characterisation results, see [Hr11].

!Z!

Some Fσ ideals:

Summable ideals. Let h : ω→ [0,∞) be a function such that
∑

n∈ω h(n) =
∞. The summable ideal associated to h is

Ih =
§

A⊆ω :
∑

n∈A

h(n)<∞
ª

.

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
Maybe $<_L$-minimal element?

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
Before we rather talked about "prime ideals" so maybe keep it consistent? (doesn't really matter...)

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
There are many classical examples of Borel ideals. Here we present some of those that have an easily understandable definitions, and the reader can see that...

important role (not roles)

Yurii Khomskii (lokal)
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It is easy to see that a summable ideal Ih is tall iff limn→∞ h(n) = 0, and
that summable ideals are Fσ P-ideals. The classical summable ideal is I1/n = Ih
where h(n) = 1/(n+ 1), or h(0) = 1 and h(n) = 1/n if n > 0. We know that
there are tall Fσ P-ideals which are not summable ideals: Farah’s example (see
[F, Example 1.11.1]) is the following ideal:

IF =
§

A⊆ω :
∑

n<ω

min
�

n, |A∩ [2n, 2n+1)|
	

n2
<∞

ª

.

The eventually different ideals.

ED=
¦

A⊆ω×ω : lim sup
n→∞

|(A)n|<∞
©

where (A)n = {k ∈ ω : (n, k) ∈ A}, and EDfin = ED � ∆ where ∆ = {(n, m) ∈
ω×ω : m≤ n}. ED and EDfin are not P-ideals.

The van der Waerden ideal:

W=
�

A⊆ω : A does not contain arbitrary long arithmetic progressions
	

.

Van der Waerden’s well-known theorem says that W is a proper ideal. W is not
a P-ideal. !Z!

For interesting results about this ideal see J. Flašková’s papers CITATION?.
The random graph ideal:

Ran= id
��

homogeneous subsets of the random graph
	�

, !Z!

where the random graph (ω, E), E ⊆ [ω]2 is up to isomorphism uniquely deter-
mined by the following property: If A, B ∈ [ω]<ω are nonempty and disjoint,
then there is an n ∈ω such that {{n, a} : a ∈ A} ⊆ E and {{n, b} : b ∈ B}∩E = ;.
A set H ⊆ ω is (E-)homogeneous iff [H]2 ⊆ E or [H]2 ∩ E = ;. Ran is not a
P-ideal.

The ideal of graphs with finite chromatic number:

Gfc =
�

E ⊆ [ω]2 : χ(ω, E)<ω
	

.

It is not a P-ideal.
Solecki’s ideal: Let CO(2ω) be the family of clopen ∆0

1? !Z!subsets of 2ω (it
is easy to see that |CO(2ω)| = ω), and let Ω = {A ∈ CO(2ω) : λ(A) = 1/2}
where λ is the usual product measure on 2ω. The ideal S on Ω is generated by
{Ix : x ∈ 2ω} where Ix = {A∈ Ω : x ∈ A}. S is not a P-ideal.

Some Fσδ ideals:
Density ideals. Let (Pn)n∈ω be a sequence of pairwise disjoint finite subsets

of ω and let ~µ= (µn)n∈ω be a sequences of measures, µn is concentrated on Pn
such that limsupn→∞µn(ω)> 0. The density ideal generated by ~µ is

Z~µ =
¦

A⊆ω : lim
n→∞

µn(A) = 0
©

.

A density ideal Z~µ is tall iff max{µn({i}) : i ∈ Pn}
n→∞
−−−→ 0, and density ideals

are Fσδ P-ideals. The density zero ideal Z=
�

A⊆ω : limn→∞ |A∩n|/n= 0
	

is a
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tall density ideal because let Pn = [2n, 2n+1) and µn(A) = |A∩ Pn|/2n. It is easy
to see that I1/n ( Z.

Szemerédi’s famous theorem says that W ⊆ Z (see [Sz75]). The stronger
statement W ⊆ I1/n is a still open ErdĂl’s prize problem ($3000).

The ideal of nowhere dense subsets of the rationals:

Nwd=
�

A⊆Q : int(A) = ;
	

where int(·) stands for the interior operation on subsets of the reals, and A is
the closure of A in R. Nwd is not a P-ideal.

The trace ideal of the null ideal: Let N be the σ-ideal of subsets of 2ω with
measure zero (with respect to the usual product measure). The Gδ-closure of a
set A⊆ 2<ω is [A] =

�

x ∈ 2ω : ∃∞ n x � n ∈ A
	

, a Gδ subset of 2ω. The trace of
N is defined by

tr(N) =
�

A⊆ 2<ω : [A] ∈N
	

.

It is a tall Fσδ P-ideal.

Some tall Fσδσ (non P-)ideals:

The ideal Conv is generated by those infinite subsets of Q∩ [0,1] which are
convergent in [0,1], in other words

Conv=
�

A⊆Q∩ [0,1] : |accumulation points of A (in R)|<ω
	

.

The Fubini product of Fin by itself:

Fin⊗ Fin=
�

A⊆ω×ω : ∀∞ n ∈ω |(A)n|<ω
	

.

Some non-tall ideals:

An important Fσ ideal:

Fin⊗ {;}=
�

A⊆ω×ω : ∀∞ n ∈ω (A)n = ;
	

,

and its Fσδ brother (a density ideal):

{;} ⊗ Fin=
�

A⊆ω×ω : ∀ n ∈ω |(A)n|<ω
	

.

Applying the Baire Category Theorem, it is easy to see that there are no Gδ
(i.e. Π∼

0
2) ideals and we already presented many Fσ (i.e. Σ∼

0
2) ideals. In general,

we have Borel ideals at arbitrary high levels of the Borel hierarchy:

Theorem 4.1. (see [C85] and [C88]) There are Σ∼
0
α- and Π∼

0
α-complete ideals for

every α≥ 3.

About ideals on the ambiguous levels of the Borel hierarchy see [E94].
We also present some (co)analytic examples.

Theorem 4.2. (see [Z90, page 321]) For every x ∈ ωω let Ix = {s ∈ ω<ω : x �
|s| � s} where ≤ is the coordinatewise ordering on every ωn. Then the ideal on
ω<ω generated by {Ix : x ∈ωω} is Σ∼

1
1-complete.

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
Are you sure we need to mention this in the paper?

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
Is this standard notation for G_delta closure? I find it confusing since it looks like the normal closure (i.e., [Tree of A]). This might be confusing (e.g., there is a paper by Hrusak in which he makes a mistake because of this...)
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Theorem 4.3. The ideal of graphs without infinite complete subgraphs,

Gc =
�

E ⊆ [ω]2 : ∀ X ∈ [ω]ω [X ]2 * E
	

is a Π∼
1
1-complete (in P([ω]2)), tall, non P-ideal.

Proof. Tallness is trivial. If for every n ∈ ω, we define En = {{k, m} : k ≤
n, !Z!m 6= k} ∈ Gc and En ⊆∗ E ⊆ [ω]2, then E contains a complete subgraph
(see also in [Me09]), hence Gc is not a P-ideal.

!Z! Let WF = {T ∈ Tree : [T] = ;} be the Π∼
1
1-complete set of well-founded

trees. Furthermore, let Tree′ be the family of those trees T such that (i) every
t ∈ T is strictly increasing and (ii) if {t ∈ T : n ∈ ran(t)} 6= ; then it has a
⊆-minimal element (n ∈ ω). Then !Z! it is not hard to see that Tree′ is also
closed in P(ω<ω) hence Polish. Finally, let WF′ = {T ∈ Tree′ : [T] = ;}, clearly,
it is also Π1

1.
We will construct Wadge-reductions WF≤W WF′ ≤W Gc.

WF ≤W WF′: Fix an order preserving isomorphism j between ω<ω and
a T0 ∈ Tree′, more precisely assign to each t = (t0, t1, . . . , tm) the sequence
(p1

t0
, p1

t0
p2

t1
, . . . , p1

t0
p2

t1
. . . pm+1

tm
), where pi denotes the ith prime number.

Let f : Tree → Tree′ be defined as f (T ) = { j(t) : t ∈ T}. Clearly, f
is continuous and T ∈ WF iff f (T ) ∈ WF′: in order to see this, notice that
every element of f (T ) will be strictly increasing, and obviously T ∈ W F iff
f (T ) ∈ W F . Moreover, if n ∈ j(t) for some t ∈ T then by the definition of j
we have p1

t0
p2

t1
. . . pm+1

tm
= n and (t0, . . . , tm) ∈ T so for such a t we will have

j((t0, . . . , tm)) ⊆ j(t). Thus, j((t0, . . . , tm)) will be a ⊆-minimal element con-
taining n.

WF′ ≤W Gc: For every T ∈ Tree′ let ET =
⋃

{[ran(t)]2 : t ∈ T}. We show
that the function T 7→ ET is continuous. If u, v ∈

�

[ω]2
�<ω

are disjoint then it
is easy to see that the preimage of the basic clopen set [u, v] = {E ⊆ [ω]2 : u ⊆
E, v ∩ E = ;} ⊆ P([ω]2) is

�

T ∈ Tree′ :
�

∃ t ∈ T u ⊆ [ran(t)]2
�

and
�

∀ t ∈ T v ∩ [ran(t)]2 = ;
�	

.

Although, as the collection of the sets satisfying first part of the condition is
a countable union of clopen sets, this set seems to be Gδ (and it is enough to
prove that Gc isΠ∼

1
1-complete), actually, it is open in Tree′: Let m=max(∪v)+1.

Then the set {T ∈ Tree′ : ∀ t ∈ T v ∩ [ran(t)]2 = ;} is the intersection of Tree′

and the clopen set (in P(ω<ω))
�

;,
�

t ∈ m≤m : t is strictly increasing and v ∩ [ran(t)]2 6= ;
	�

.

The function T 7→ ET !Z! is a reduction of WF′ to Gc: Clearly, if T ∈ Tree′

and x ∈ [T] then X = ran(x) ∈ [ω]ω shows!Z! that ET /∈ Gc (i.e. [X ]2 ⊆ E).
Conversely, if [X ]2 ⊆ ET and X = {k0 < k1 < . . . }, then for every n there is
a tn ∈ T such that kn, kn+1 ∈ ran(tn), we can assume that tn is minimal in
{s ∈ T : kn+1 ∈ ran(s)}. It yields that t0 ⊆ t1 ⊆ t2 ⊆ . . . �
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In the following example, we show that a seemingly!Z! “very” Π1
2 definition

can also give us a Π∼
1
1-complete ideal.

Theorem 4.4. The ideal

I0 =
�

A⊆ω×ω : ∀ X , Y ∈ [ω]ω ∃ X ′ ∈ [X ]ω ∃ Y ′ ∈ [Y ]ω A∩ (X ′ × Y ′) = ;
	

is a Π∼
1
1-complete (in P(ω×ω)), tall, non P-ideal.

Proof. Tallness is easy because injective partial functions from!Z!ω toω belong
to I0.

First we show that this ideal isΠ∼
1
1, for which the next claim is clearly enough.

For X , Y ∈ [ω]ω define T ↑(X , Y ) = {(n, k) ∈ X × Y : n < k} and T ↓(X , Y ) =
{(n, k) ∈ X × Y : n> k}.

Claim. A∈ I0 iff for every infinite X and Y the set A does not contain T ↑(X , Y ) or
T ↓(X , Y ).

Proof of the Claim. The “only if” part is trivial. Conversely, assume that A /∈ I0,
i.e. there exist X , Y ∈ [ω]ω such that A∩ (X ′ × Y ′) 6= ; for every X ′ ∈ [X ]ω
and Y ′ ∈ [Y ]ω. Fix increasing enumerations X = {x0 < x1 < x2 < . . . } and
Y = {y0 < y1 < y2 < . . . }. By shrinking the sets X and Y , we can assume
that x0 < y0 < x1 < y1 < . . . , in particular X ∩ Y = ;. Consider the following
coloring c : [ω]2 → 2 × 2: for m < n let c(m, n) = (χA(xm, yn),χA(xn, ym))
where χA(x , y) = 1 iff (x , y) ∈ A.

Applying Ramsey’s theorem, there exists an infinite homogeneous subset S ⊆
ω. Let S = Z∪W be a partition into infinite subsets such that the elements of Z
and W follow alternatingly in S. Then the elements of the sets X ′ = {xm : m ∈
Z} and Y ′ = {yn : n ∈W} follow alternatingly in ω as well.

S cannot be homogeneous in color (0, 0), otherwise A∩ (X ′ × Y ′) = ; would
hold. Similarly, if S is homogeneous in color (1, 1) then X ′× Y ′ ⊂ A and we are
done.

Now suppose that S is homogeneous in color (1,0) (for (0,1) the same argu-
ment works). If xm ∈ X ′, yn ∈ Y ′ and xm < yn then m < n because Z ∩W = ;.
Hence by the homogeneity of S we can conclude (xm, yn) ∈ A, so T ↑(X ′, Y ′) ⊆
A. �

Now we show that I0 is Π∼
1
1-complete. We will use (see [K, 27.B]) that the set

S =
�

C ∈K(2ω) : ∀ x ∈ C ∀∞ n ∈ω x(n) = 0
	

is Π∼
1
1-complete where K(2ω) stands for the family of compact subsets of 2ω

equipped with the Hausdorff metric, i.e. with the Vietoris topology???, we know
that K(2ω) is a compact Polish space.

To finish the proof, we will define a Borel map K(2ω)→ P(ω×ω), C 7→ AC
such that C ∈ S iff AC ∈ I0. Fix an enumeration {sm : m ∈ω} of 2<ω, for every
s ∈ 2<ω define [s] = {x ∈ 2ω : s ⊆ x} (a basic clopen subset of 2ω), and let

AC =
�

(m, n) : |sm|> n, sm(n) = 1, and [sm]∩ C 6= ;
	

.
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For C ∈ S we show that AC ∈ I0. Let X , Y ∈ [ω]ω be arbitrary. If the set
{m ∈ X : [sm]∩ C = ;} is infinite then we are done, since

AC ∩
��

m ∈ X : [sm]∩ C = ;
	

× Y
�

= ;.

Otherwise, using the compactness of C we can choose an {m0 < m1 < . . . } =
X ′ ∈ [X ]ω and a convergent sequence (x i)i∈ω such that x i ∈ [smi

]∩C for every
i. If x i → x then x ∈ C ∈ S !Z! so x(n) = 0 for every n ≥ n0 for some n0.
If n ∈ Y \ n0 then for every large enough i we have n < |smi

| and smi
(n) =

x(n) = 0, hence the section {m : (m, n) ∈ (AC ∩ (X ′ × Y ))} is finite. On the
other hand, for a fixed m if |sm| ≤ n then (m, n) /∈ AC , therefore the section
{n : (m, n) ∈ (AC ∩ (X ′×Y ))} is also finite. By an easy induction, one can define
an X ′′ ∈ [X ′]ω and a Y ′′ ∈ [Y ]ω such that AC ∩ (X ′′ × Y ′′) = ;.

Now we show that if C 6∈ S then AC 6∈ I0. Let x ∈ C be so that Y = {n :
x(n) = 1} is infinite and let X = {m : x ∈ [sm]}. Now clearly, if (m, n) ∈ X × Y
then (m, n) ∈ AC if and only if n < |sm|. In particular, for every n ∈ Y the set
{m ∈ X : (m, n) 6∈ AC} is finite, and it clearly implies that the rectangle X × Y
witnesses that AC /∈ I0.

Finally, the failure of the P property is trivial: consider the sets An ∈ I 0 defined
by An = {(k, l) : k < n}. If for some A we have An ⊆∗ A for every n then every
horizontal section of A is co-finite. By induction one can select infinite sets X
and Y with T ↓(X , Y ) ⊂ A, so by the claim A 6∈ I0. �

Remark 4.5. One can give an alternate proof of Theorem 4.3 constructing a
Borel reduction of the set C to Gc.

Theorem 4.6. There exist Σ∼
1
n and Π∼

1
n-complete tall ideals for every n≥ 1.

Proof. First we will construct Σ∼
1
n-complete ideals. Let J be a tall Borel ideal, A

be a perfect J-AD family, and let An be a Σ∼
1
n-complete subset of the Polish space

A. Define In = id(J∪An), i.e. In is the ideal generated by J∪An. Then In is a
tall proper (because An is infinite) ideal. In is Σ∼

1
n because

In =
�

X ⊆ω : ∃ k ∈ω ∃ (Ai)i<k ∈Ak
n X \

�

A0 ∪ A1 ∪ · · · ∪ Ak−1

�

∈ J
	

In order to see that In is Σ∼
1
n-complete, we know that if B is a Σ∼

1
n set a Polish

space X, then it can be reduced to An with a with a continuous map f : X→A,
furthermore applying the trivial observation that An = In ∩A, we obtain that
this map is in fact a reduction of B to In as well.

Now we proceed with Π∼
1
n ideals. Again, there exists a Π∼

1
n-complete set Bn ⊆

A. The previous argument gives that the ideal I′n = id(J∪Bn) is Π∼
1
n-hard, so it

is enough to prove that I′n is Π∼
1
n. In order to see this just notice that since A is

an J-AD-family, if I0 = id(J∪A) then we have

X ∈ I0 \ I′n iff S ∈ I0 and ∃ A∈A \Bn A∩ X ∈ J+.

This implies, as I0 is clearly Σ∼
1
1, that I0 \ I′n is a Σ∼

1
n set. So using I′n ⊂ I0 we

obtain that IA is Π∼
1
n. �

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
in


Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
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The idea of the above proof can be used to construct Σ∼
0
α-complete ideals for

α≥ 3 as well.

5. ON (I, Fin)-ADR’S

In this section, we study Question 1.8.

Theorem 5.1. Assume MAκ and let I be an everywhere meager ideal, then every
H ∈ [I+]≤κ has an (I, Fin)-ADR.

Proof. Let H = {Hα : α < κ} be an enumeration. Define p ∈ P = P(H) iff p is
a function, dom(p) ∈ [κ]<ω, and p(α) ∈ [Hα]<ω for every α ∈ dom(p); p ≤ q
iff dom(p) ⊇ dom(q), ∀ α ∈ dom(q) p(α) ⊇ q(α), and ∀ {α,β} ∈ [dom(q)]2

p(α)∩ p(β) = q(α)∩ q(β).
Then P is a poset. First of all, we show that P has the ccc. Let {pξ : ξ < ω1} ⊆
P. Then {dom(pξ) : ξ < ω1} ⊆ [κ]<ω. We can assume that this family forms
a ∆-system, dom(pξ) = Dξ ∪ R. There are at most ω many functions R→ Fin,
hence we can also assume that there is a q ∈ P such that pξ � r = q for every
ξ < ω1. Clearly, pξ ∪ pζ ∈ P and pξ ∪ pζ ≤ pξ for every ξ,ζ < ω1.

It is easy to see that for every α < κ the set Dα = {p ∈ P : α ∈ dom(p)}
is dense in P. If G is a {Dα : α < κ}-generic filter, then let FG : κ → P(ω),
FG(α) =

⋃

{p(α) : p ∈ G}. Clearly, FG(α) ⊆ Hα for every α.
We show that FG(α) ∩ FG(β) is finite for every two distinct α,β < κ. Let

p ∈ Dα∩G, q ∈ Dβ ∩G, and r ∈ G be a common lower bound of them. It is easy
to see that FG(α)∩ FG(β) = r(α)∩ r(β).

If somehow we can make sure that FG(α) ∈ I+, then we are done because
{FG(α) : α < κ} will be an (I, Fin)-ADR of H. We show that if G is (V,P)-
generic then FG(α) is a Cohen-real in P(Hα) over V . It is enough because then
(a) FG(α) /∈ I � Hα (we know that I � Hα is meager) and (b) to show (a) for
every α, it is enough to use κ many dense sets. !Z!WHY???

Fix an α < κ, let C(Hα) = {s : s is a finite partial function form Hα to 2}
where s ≤ t iff s ⊇ t (then C(Hα) adds a Cohen subset of Hα over V ), and
define the map e = eα : P→ C(Hα) as follows:

(i) dom(e(p)) =
⋃

{p(β)∩Hα : β ∈ dom(p)};
(ii) e(p)(n) = 1 iff n ∈ p(α).

We show that e is a projection (see e.g. [A11, page 335]) , that is,

(1) e is order-preserving, onto, and e(;) = ;;

(2) ∀ p ∈ P ∀ s ∈ C(Hα)
�

s ≤ e(p)→∃ p′ ≤ p e(p′) = s
�

.

Clearly, e(;) = ;. If p ≤ q and n ∈ dom(e(q)) then, as p(β) ⊃ q(β) we have
that e(p)(n) = 0 implies e(q)(n) = 0. Moreover, e(p)(n) = 1 and e(q)(n) = 0
would imply n ∈ dom(q(β)) for some β 6= α hence dom(p(α))∩ dom(p(β)) )
dom(q(α))∩ dom(q(β)), a contradiction. So e is indeed order preserving.

To show that e is onto, we have to assume that Hα ⊆
⋃

{Hβ : β 6= α} (and
w.l.o.g. we can do so by extending H to be a cover of ω and adding ω as an
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element to H). For an s ∈ C(Hα) define p ∈ P as follows: Fix a finite D ⊆ κ
containing α such that dom(s) ⊆

⋃

{Hβ : β ∈ D}, let dom(p) = D, and define
p(α) = s−1(1) and p(β) = {n ∈ Hβ ∩Hα : s(n) = 0}. Then e(p) = s.

To show that e satisfies (2), fix a p ∈ P, an s ∈ C(Hα), and assume that
s ≤ e(p). Define p′ ∈ P as follows: For every n ∈ J = (s \ e(p))−1(0) pick a
γn ∈ κ\ {α} such that n ∈ Hγn

. Let dom(p′) = dom(p)∪{γn : n ∈ J} and define
p′(α) = p(α)∪s−1(1), if β ∈ dom(p′)\{α} then p′(β) = p(β)∪{n ∈ J : β = γn}.
It is straightforward to see that p′ ∈ P, p′ ≤ p, and e(p′) = s.

We know that if G is (V,P)-generic then e[G] generates a (V,C)-generic filter
G′. Notice that the Cohen real defined from G′ is FG(α), so !Z! we are done. �

Unfortunately, at this moment, we do not know whether we really needed
Martin’s Axiom in the previous theorem or it holds in ZFC. We show that if we
attempt to construct a counterexample, that is, say a tall Borel ideal I and a
family H ∈ [I+]<c without a (I, Fin)-ADR, we have to be careful. Let us define
the following cardinal invariants of tall ideals on ω: The star-additivity of I is

add∗(I) =min
�

|X| : X ⊆ I and > A∈ I ∀ X ∈ X X ⊆∗ A
	

,

the Fodor number of I is

F(I) =min
�

|H| : H ⊆ I+ has no I-ADR
	

,

and the star-Fodor number of I is

F∗(I) =min
�

|H| : H ⊆ I+ has no (I, Fin)-ADR
	

.

Clearly, I is a P-ideal iff add∗(I) > ω. Proposition 1.7 says that F(I) = c
whenever I is everywhere meager; and clearly, F∗(I)≤ F(I).

Fact 5.2. If add∗(I)< F(I) then add∗(I)< F∗(I). If add∗(I) = F(I) then F(I) =
F∗(I).

Proof. Assume that H = {Hα : α < κ} ⊆ I+ where κ = add∗(I) < F(I). First
fix an I-ADR {Aα : α < κ} of H (Aα ⊆ Hα). Then for every α < κ fix a Bα ∈ I

such that Aα ∩ Aβ ⊆∗ Bα for every β < α, and let A′α = Aα \ Bα. Then {A′α : α <
κ} is an (I, Fin)-ADR of H. The second statement can be proved by the same
argument. �

In particular, if I is a P-ideal, and F∗(I)< c, then c≥ω3.

6. PROOF OF THEOREM 1.6

Proof. Applying Corollary 1.11, we can fix perfect I-AD families AX on every
X ∈ I+. The statement “AX is an I-AD family” is (at most) Π∼

1
2 hence absolute

because if AX = [T] is coded by the perfect tree T ∈ Tree2 = {T ⊆ 2<ω : T is a
tree} then “AX is an I-AD family”≡

∀ x , y ∈ [T]
�

x ∈ I+ and (x = y or x ∩ y ∈ I)
�

where of course we are working on 2ω and (x ∩ y)(n) = x(n) · y(n) for every n.
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For every X , Y ∈ I+ let B(X , Y ) = {A∈AX : A∩ Y ∈ I+}. Then it is a continu-
ous preimage of I+ (under AX → P(ω), A 7→ A∩ Y ), hence if I is analytic then
B(X , Y ) is coanalytic, and similarly, if I is coanalytic then B(X , Y ) is analytic.

Let κ = |cV |W and fix an enumeration {Xα : α < κ} of the set I+ ∩ V in W .
Working in W , we will construct the desired I-AD refinement {Aα : α < κ},
Aα ⊆ Xα by recursion on κ. During this process, we will also define a sequence
(Bα)α<κ in I+.

Assume that {Aξ : ξ < α} and (Bξ)ξ<α are done. Let γα be minimal such
that B(Xγα , Xα) contains a perfect set. This property, namely, that an analytic
or coanalytic set H ⊆ P(ω) contains a perfect set, is absolute because if it is
analytic then “H contains a perfect subset” iff “H is uncountable” is of the form
“∀ f ∈ P(ω)ω ∃ x (x ∈ H and x /∈ ran( f ))” hence it is Π∼

1
2; and if H is coanalytic

then “H contains a perfect set” is of the form “∃ T ∈ Tree2 (T is perfect and ∀
x ∈ [T] x ∈ H)” hence it is Σ∼

1
2. In particular, γα ≤ α. We also know that if C is

a perfect set coded in V , then in W it contains κmany new elements: We know
it holds for 2ω e.g. because of the group structure on it, and we can compute
new elements of C along a homeomorphism between C and 2ω fixed in V . Let

Bα ∈ B(Xγα , Xα) \
�

V ∪ {Bξ : ξ < α}
�

be arbitrary,

and finally, let Aα = Xα ∩ Bα ∈ I+. We claim that {Aα : α < κ} is an I-AD family
(it is clearly a refinement of I+ ∩ V ). Let α,β < κ, α 6= β .

If γα = γβ = γ then Bα, Bβ ∈AXγ are distinct, and hence Aα∩Aβ ⊆ Bα∩Bβ ∈ I

(actually, we can assume that it is finite).
If γα < γβ , then because of the minimality of γβ , we know that B(Xγα , Xβ)

does not contain perfect subsets. It is enough to see that B(Xγα , Xβ) is the same
set in W , i.e. if ψ(x , r) is a Σ1

1(r) or Π1
1(r) definition of this set then ∀ x ∈W

(ψ(x , r)→ x ∈ V ). Why? Because then Bα /∈ B(Xγα , Xβ) but Bα ∈ AXγα
, hence

it yields that Aα ∩ Aβ ⊆ Bα ∩ Xβ ∈ I.
The set K := B(Xγα , Xβ) is analytic or coanalytic and does not contain perfect

subsets (neither in V nor in W ). Applying the Mansfield-Solovay theorem, we
know that K ⊆ L[r] (r ∈ V ). We also know that (L[r])V ∩ P(ω) = (L[r])W ∩
P(ω) holds because ωW

1 ⊆ V , hence KV = KW . �

Remark 6.1. It is natural to ask the following: Assume that V ⊆W are transitive
models, W contains new reals, and let C be a perfect set coded in W . Does C
contain at least |cV |W many new elements in W? In other words: Does |CW \
V |W ≥ |cV |W hold? Surprisingly, the answer is no! Moreover, it is possible that
there is a perfect set of groundmodel reals in the extension, see [VW98].

Remark 6.2. What can we say about possible generalizations of Theorem 1.6,
for example, can we weaken the condition on the complexity of the ideal? In
general, this statement is false. Let ϕ(x) be aΣ1

2 definition of aΣ1
2 prime P-ideal

I in L (of course, the construction of a Σ1
2 prime ideal can be modified to obtain

a P-ideal). We cannot expect that ϕ(x) defines an ideal in general but we can
talk about the generated ideal: x ∈ J iff “∃ y ∈ I x ⊆ y” which is Σ1

2 too. If r is

Yurii Khomskii (lokal)
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a Sacks real over L, then J is still a prime ideal WHY??Why do we need the p
prop?? in L[r] hence J+ ∩ L does not have any J-ADR’s in L[r].

7. MIXING REALS AND CARDINAL INVARIANTS

In this section, we study two closely related rather descriptive properties of
forcing notions, one of which is slightly stronger then “[ω]ω∩V has an ADR in
VP”.

Definition 7.1. Let P be a forcing notion. We say that an f ∈ωω∩VP is a mixing
real over V if | f [X ]∩Y |=ω for every X , Y ∈ [ω]ω∩V . If f is one-to-one, then
we call it an injective mixing real or mixing injection.

Clearly, in the definition above, it is enough to require that f [X ]∩ Y 6= ; for
every X , Y ∈ [ω]ω ∩ V .

Proposition 7.2. Let P be a forcing notion. Then the following are equivalent:
(i) There is a mixing real f ∈ωω ∩ VP over V .

(ii) There is an f ∈ωω ∩ VP such that f [X ] =ω for all X ∈ [ω]ω ∩ V .
(iii) There is a partition (Yn)n∈ω of ω into infinite sets in VP such that ∀

X ∈ [ω]ω ∩ V ∀ n |X ∩ Yn|=ω.
(iii)’ There is a partition (Yn)n∈ω of ω into infinite sets in VP such that ∀

X ∈ [ω]ω ∩ V ∀ n X ∩ Yn 6= ;.

Proof. (ii)→(i) and (iii)↔(iii)’ are trivial. (ii)↔(iii)’ because let Yn = f −1(n)
(and vice versa). Finally, (i) implies (ii): Fix a partition (Cn)n∈ω of ω into
infinite sets in V and let g : ω→ ω, g � Cn ≡ n. If f is a mixing real over V ,
then h= g ◦ f has the required property. �

(iii) says that mixing reals can be seen as “infinite splitting reals”. Recall
that a set S ⊆ ω is a splitting real over V if |X ∩ S| = |X \ S| = ω for every
X ∈ [ω]ω ∩ V .

Why is this property relevant to almost-disjoint refinements? Fix an AD
family A = {Aα : α < c} in V , and let {Xα : α < c} be an enumeration
of [ω]ω in V . If f ∈ ωω ∩ VP is a mixing injection over V , then the family
{ f [Aα]∩ Xα : α < c} ∈ VP is an ADR of [ω]ω ∩ V .

Proposition 7.3. Let P be a forcing notion.
(i) If P adds random reals then it adds mixing reals.

(ii) If P adds dominating reals, then it adds mixing reals.
(iii) If P adds Cohen reals then it adds mixing injections.
(iv) If P adds mixing injections then it adds unbounded reals.
(v) If P has the Laver-property, then it does not add injective mixing reals.

Proof. (i): Let λ be the usual probability measure on ωω, that is, λ is uniquely
determined by the values λ([s]) = 2−s(0)−s(1)−···−s(n−1)−n where s : n→ ω and
[s] = { f ∈ ωω : s ⊆ f }. If Nλ = {A ⊆ ωω : λ(A) = 0}, then it is well-know
that Borel(ωω)/Nλ is forcing equivalent to the random forcing. It is enough to
see that the set AX ,Y = { f ∈ ωω : | f [X ]∩ Y | < ω} is a null set in ωω for every

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
Not sure I understand "rather descriptive"

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
I would prefer "splitting partition" or "infinite splitting partition"

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
Here we can cite Lemma 7.3.48 from Bartoszynski-Judah, even though it talks about Miller forcing (but the proof for Sacks should be even easier). 

I am not sure if P-points are really *necessary* in this case. There is a general result that every forcing adding a new real destroys some ultrafilter, but that's probably not a definable ultrafilter. So it *could* be that Sacks frocing preserves Delta^1_2 ultrafilters, but I have no idea.


Yurii Khomskii (lokal)
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Isn't that the *definition* of random forcing?
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X , Y ∈ [ω]ω: AX ,Y =
⋃

n∈ω{ f ∈ ω
ω : f [X ] ∩ Y ⊆ n} and if X = {xk : k ∈ ω}

and n ∈ ω then { f : f [X ] ∩ Y ⊆ n} = { f : ∀ k f (xk) ∈ n ∪ (ω \ Y )}. Clearly,
∑

{2−m−1 : m ∈ n ∪ (ω \ Y )} = ε < 1 and hence λ({ f : f [X ] ∩ Y ⊆ n}) ≤
!Z! limk→∞ ε

k = 0.

(ii): Trivial modification of the proof of fact that adding a dominating real
implies adding a splitting real works here as well (see e.g. [Hb, Fact 20.1]).
do we need more details here? I would vote for a detailed proof.

(iii): We can talk about injective Cohen-reals. Simply consider the forcing
notion (Inj,⊇) where Inj = {s ∈ ω<ω : s is one-to-one}, or the forcing notion
(Borel(INJ) \M(INJ),⊆) where INJ = { f ∈ωω : f is one-to-one} is a nowhere
dense closed subset onωω and M(INJ) is the meager ideal on this Polish space.
It is not hard to see that these forcing notions are forcing equivalent to the
Cohen forcing.

If c is an injective Cohen-real over V , then c is mixing: For every X , Y ∈ [ω]ω,
the set A′X ,Y = AX ,Y ∩ INJ =

⋃

n∈ω
�

f ∈ INJ : f [X ]∩ Y ⊆ n
	

is meager because
{ f ∈ INJ : f [X ]∩ Y ⊆ n} is closed and nowhere dense in INJ.

(iv): Let f ∈ INJ∩VP be a mixing injection and assume on the contrary that
there is a strictly increasing g ∈ ωω ∩ V such that f , f −1 < g (where of course
f −1 < g means that f −1(k)< g(k) for every k ∈ ran( f )).

We define X = {xk : k ∈ ω}, Y = {yk : k ∈ ω} ∈ [ω]ω in V as follows:
x0 = 0, y0 = g(0), xn = max{g(yk) : k < n}, and yn = g(xn). Suppose that
f (xk) = yl for some k, l ∈ω. If k ≤ l then

f (xk)< g(xk) = g(max{g(ym) : m< k})≤ g(max{g(ym) : m< l})< yl ,

a contradiction. Now, if k > l then

xk = f −1(yl)< g(yl)≤max{g(ym) : m< k}= xk

which is again impossible. Thus, f [X ]∩Y = ;, so f cannot be a mixing injection.

(v): Fix a sequence (an)n∈ω in V with the property an+1 − an > (n+ 2)2n+1

and a0 > 1. Assume that p � ḟ ∈ INJ. Let ġ be a P-name for a function on
ω such that p � ġ(n) = !Z!graph( ḟ ) ∩ (an × an) for every n. Then p � ġ ∈
∏

n∈ωP(an×an) hence there is a q ≤ p and a “slalom” S :ω→ [ω×ω]<ω in V
which catches ġ, that is, S(n) ⊆ !Z!P(an×an), |S(n)| ≤ 2n, and q � ġ(n) ∈ S(n)
for every n: here we apply the Laver property of our forcing notion to a name
g for an ω → [ω ×ω]<ω function. We can assume that all elements of S(n)
are injective partial functions an → an.1.WHY? 2. COULDN’T WE USE USUAL
SLALOMS?

Working in V , we will define the sets X = {xn : n ∈ ω}, Y = {yn : n ∈ ω} ∈
[ω]ω by recursion on n such that q � ḟ [X ]∩ Y = ;.

Let x0 ∈ a0 be arbitrary. We know that there is a y0 ∈ a0 such that (x0, y0) /∈
⋃

S(0) (a function cannot cover {(x0, k) : k < a0}).

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
I think this reference is sufficient, or maybe we can give a sketch: "from a dominating real we easily obtain a _dominating interval partition_ of omega (meaning that ...... ). Letting {Y_n : n< \omega} be such that each Y_n is the union of infinitely many intervals of this partition, it is easy to see that {Y_n : n< \omega} satisfies condition (iii) from Proposition 7.2"
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Yurii Khomskii (lokal)
Maybe "since this is a countable notion of forcing..."
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for a function from omega to...

Yurii Khomskii (lokal)


Yurii Khomskii (lokal)
It should really say that " \dot{g} is an element of Prod_{n \in \omega} INJ(a_n, a_n)", where INJ(a_n, a_n) is the set of injective functions from a_n to a_n. If I understand the proof correctly, this is used in an essential way, e..g, in the last line of this pagee "a function cannot cover ...."  (this also answers Zoltan's complaint below)
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Assume that we already have Xn = {xk : k ≤ n} and Yn = {yk : k ≤ n} such
that (Xn × Yn)∩

⋃

k≤n

⋃

S(k) = ;. There is an xn+1 ∈ an+1 \ an such that
�

s(xn+1) : s ∈ S(n+ 1), xn+1 ∈ dom(s)
	

∩ Yn = ;.

Why? If for every m ∈ an+1 \ an there is an sm ∈ S(n+ 1) such that sm(m) ∈ Yn
then there is a set H ∈ [an+1\an]n+2 such that sm = s does not depend on m ∈ H
(because |an+1 \ an| > (n+ 2)2n+1 and |S(n+ 1)| ≤ 2n+1). But it would mean
that H ⊆ dom(s) and |s[H]| ≤ |Yn|= n+ 1 which is a contradiction because s is
injective.

We also want to fix a yn+1 ∈ an+1\an such that yn+1 6= s(xk) for any k ≤ n+ 1,
s ∈ S(n + 1) if xk ∈ dom(s). The set of forbidden values is of size at most
2n+1(n+ 2) hence there is such a yn+1. �

In the diagram below, we summarize logical implications between classical
properties of forcing notions and the ones we defined above. We will show
that arrows without an ∗ above them are strict (i.e. not equivalences), and that
there are no other implications between these properties. The arrow · · ·> with
question mark means that we do not know whether this implication holds (but
the reverse implication is false). Of course, C stands for the Cohen forcing, B
is the random forcing, and to keep the diagram small, we did not put “P adds
. . . ” and “P has the . . . ” before the properties we deal with.

C-reals dom. reals

inj. mixing -

∗
-

unb. reals
-

B-reals - mix. reals
?-

∗- spl. real

¬Laver prop.
?

-
-

¬Sacks prop.
?

?

-

The non-trivial non-implications in the diagram are the following:
• ¬Laver prop. 9 splitting reals: PT f ,g (see [BrJ, 7.3.B])

no splitting??? e.g. if it preserves P-points...

• ¬Sacks prop. 9 splitting reals: The Miller forcing (see [BrJ, Lemma
7.3.48]).

we do not need this is the first one above is OK
• unbounded reals9 splitting reals: The Miller forcing (see [BrJ, 7.3.E]).
• spl. reals 9 ¬Sacks prop.: Silver forcing (see [Hb, Lemma 2.3] and

Sacks prop??? )

We list the remaining questions in the next section.

Yurii Khomskii (lokal)
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Have we really covered absolutely all possible cases of implications? 
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... > can be 

\usepackage{ amssymb }
\dashrightarrow
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Yurii Khomskii (lokal)
Better idea. The "Infinitely equal forcing EE" from Section 7.4.C in Bart-Judah. I don't really understand this forcing very well, but trusting the book, it is 

(a) omega^omega-bounding (Lemma 7.4.14)
(b) preserves p-points (Lemma 7.4.15)
(c) makes ground model reals measure zero (Lemma 7.4.13)

Now it follows that EE cannot have the Laver property: if it did,  it would also have the Sacks property since it's omega^omega-bounding. But then it cannot have property (c), since forcings with the Sacks property do not increase non(null) (in fact they do not increase cof(null), and we can use Theorem 2.3.12 from the book as a reference for this fact).
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I don't know a good reference, but it's a compeltely straightforward proof.
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8. RELATED QUESTIONS

Question 8.1. Does there exist a non-meager ideal I (in ZFC) such that there
are perfect (I, Fin)-AD families on every X ∈ I+?

In Example 3.3, assuming that there is a Σ∼
1
2 ultrafilter, we constructed a Σ∼

1
2

ideal I such that every I-AD family is countable but I is nowhere maximal.

Question 8.2. Is it consistent that there are no Σ∼
1
2 ultrafilters but there is a Σ∼

1
2

ideal I such that every I-AD family is countable but I is nowhere maximal?
Remark: We know (see ??? ) that if we add any number of random reals

simultaneously over a model of V = L, in the extension there are no Σ∼
1
2 ultrafil-

ters but there is a non meager Σ∼
1
2 ideal I (and hence I is nowhere maximal). It

would be interesting to know the possible sizes of I-AD families in this model.

We already presented Σ∼
1
n- and Π∼

1
n-complete ideals but our construction was

pretty artificial.

Question 8.3. Can we define “natural” Σ∼
1
n- and Π∼

1
n-complete ideals?

Question 8.4. Is it consistent that for some (tall) Borel (P-)ideal I a family
H ∈ [I+]<c does not have an (I, Fin)-ADR?

Question 8.5. Assume that V, W and I are as in Theorem 1.6. Does there exist
an (I, Fin)-ADR of I+ ∩ V in W? Or at least an I-ADR {AX : X ∈ I+ ∩ V} ∈ W
such that for every two distinct X , Y ∈ I+ ∩ V (using the notiations from the
proof of Theorem 1.6) there is a BX ,Y ∈ I∩ V such that AX ∩ AY ⊆ BX ,Y ?

Question 8.6. Does adding mixing injections imply adding Cohen reals?

Question 8.7. Does the the Sacks property of a forcing notion imply that it does
not add mixing reals?

Proposition 7.2 motivates the following notions: Let n ∈ !Z!ω \ 2. We say
that a forcing notion adds an n-splitting real, if there is a partition (Yk)k<n of ω
into infinite sets in VP such that |X ∩Yk|=ω for every X ∈ [ω]ω∩V and k < n.
In particular, adding 2-splitting reals is the same as adding splitting reals, and
adding ω-splitting reals is equivalent to adding mixing reals.

Question 8.8. Does adding n-splitting reals (n ≥ 2) imply adding (n + 1)-
splitting reals?

Question 8.9. Does adding splitting reals (or n-splitting reals for every n) imply
adding mixing reals? What can we say about the Silver forcing? (It is straight-
forward to see that it adds n-splitting reals for every n.)
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Delta^1_2
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Actually, this is not well-known so it's better to explain this.

1. If there are no dominating reals over the reals of L[r] for every real r, then there exists a Sigma^1_2 unbounded filter-- this can be cited: Bart-Judah Theorem 9.3.9 (2).

2. If all Delta^1_2 sets are either: Lebesgue-measurable, have the Baire property, or the Ramsey property (or the Silver-measurability property), then there cannot be Delta^1_2 Ultrafilters.

3. Therefore, in ANY model where the above is true but where we don't add dominating reals, will satisfy the conclusion. E.g.: Cohen model, random model, or the Silver-iterated model. (For Cohen and Random, we can refer to Bar9t-Judah, Theorem 9.2.1.
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Something that might be worth mentioning in relation to these questions (here or perhaps at the end of the previous section).

"It is easy to see that if P adds a splitting real then an iteration of P of length n adds a 2^n-splitting real. In fact, splitting reals and n-splitting reals cannot be separated in terms of cardinal invariants. If "s_n" denotes the "least size of a family of n-splitting reals" then s_n = s: for the non-trivial direction, assume we have a splitting family of size kappa and consider all possible iterated "nestings" of splitting reals from that family; there are kappa^n = kappa many of them, and each one forms an n-splitting family. The same holds for the number s_{< omega}, i.e., the least size of a family A such that for every X and every n, there exists an n-splitting-real in A which splits X.  However, it is not clear whether the same holds for s_{mix} = least number of mixing reals."

In fact I haven't thought a lot about the last sentence.. perhaps it is true but I am not sure. Also, I am not sure if an omega-iteration of forcings adding splitting reals will necessarily add a mixing real. Any ideas? (let's not spend too much time on this :)
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n \geq 2

Again I think it's better to use n-splitting partition or something like that.

There is actually a term "omega-splitting real", and it means something totally difrerent (a real which splits countably many reals at once...) so this might be confusing.
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