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Category arguments

Nowhere differentiable functions

Theorem. (Banach, 1931) The set of nowhere differentiable
functions is a comeager subset of CJ[0,1].
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Category arguments

Nowhere differentiable functions

Theorem. (Banach, 1931) The set of nowhere differentiable
functions is a comeager subset of CJ[0,1].

Existence

Corollary. There exists a nowhere differentiable continuous
function.

v
Level sets

Theorem. (Bruckner, Garg, 1977) For comeager many f € C|a, b]
there exists a countable dense A C (min(f), max(f)) such that for
every y € (min(f), max(f))\ A the set f~1(y) is perfect and for
y € Athe set f~1(y) is a perfect set and an isolated point.
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Measure theoretic analogs

What is the natural measure on C|0,1]?
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Measure theoretic analogs

What is the natural measure on C|0,1]?

Definition. Let (G, +) be a Polish abelian topological group and p
is a Borel measure on G. We say that p is a Haar measure on G if
o for every t € G and B C G Borel u(B) = p(t + B).

e 1 is Borel regular, for every K compact pu(K) < oo
@ [ is continuous
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Measure theoretic analogs

What is the natural measure on C|0,1]?

Invariance

Definition. Let (G, +) be a Polish abelian topological group and p
is a Borel measure on G. We say that p is a Haar measure on G if

o for every t € G and B C G Borel u(B) = p(t + B).
e 1 is Borel regular, for every K compact pu(K) < oo

@ [ is continuous

Haar measure

Theorem. (Haar, Weil) Let (G, +) be a Polish abelian topological
group. There exists a nontrivial Haar measure on G if and only if

G is locally compact. Moreover, if p exists then it is unique up to
a multiplicative constant.
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Generalization of N/

Definition. (Christensen, 1972) Let (G, +) be a Polish abelian

group and S C G. We say that S is Haar null (shy) if there exists
a universally measurable U D S and a continuous Borel probability
measure 1 on G such that for every t € G we have pu(t + U) = 0.
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Generalization of N/

Definition. (Christensen, 1972) Let (G, +) be a Polish abelian
group and S C G. We say that S is Haar null (shy) if there exists
a universally measurable U D S and a continuous Borel probability
measure 1 on G such that for every t € G we have pu(t + U) = 0.

Relation to Haar measures

Proposition. Suppose G is locally compact. Then S is Haar null if
and only if u(S) =0, where p is the Haar measure on G.

v
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Generalization of N/

Shy sets

Definition. (Christensen, 1972) Let (G, +) be a Polish abelian
group and S C G. We say that S is Haar null (shy) if there exists
a universally measurable U D S and a continuous Borel probability
measure 1 on G such that for every t € G we have pu(t + U) = 0.

Relation to Haar measures

Proposition. Suppose G is locally compact. Then S is Haar null if
and only if u(S) =0, where p is the Haar measure on G.

v

Further properties

Proposition. For any Polish abelian group G the Haar null subsets
of G form a o-ideal.

v
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Possible variations

Naive approach
Let Syaive = {AC G : (Fu)(Vt € G)((A+t) =0)}.
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Possible variations

Naive approach
Let Syaive = {AC G : (Fu)(Vt € G)((A+t) =0)}.

In fact, Spajve is Not necessarily an ideal.
Proposition. (CH) If E C (Z¥)? is a well ordering of Z*, then
E U E€ = (Z*)?, but E is naively Haar null.
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Possible variations

Naive approach
Let Syaive = {AC G : (Fu)(Vt € G)((A+t) =0)}.

In fact, Spajve is Not necessarily an ideal.

Proposition. (CH) If E C (Z¥)? is a well ordering of Z*, then
E U E€ = (Z*)?, but E is naively Haar null.

Under V = L it can be chosen Al.
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Possible variations

Naive approach
Let Snaive = {AC G : (Fu)(Vt € G)(W(A+t)=0)}.

In fact, Spajve is Not necessarily an ideal.

Proposition. (CH) If E C (Z¥)? is a well ordering of Z*, then
E U E€ = (Z*)?, but E is naively Haar null.

Under V = L it can be chosen Al.

Negative results

Theorem. (Elekes, Steprans) There exists a non Lebesgue-null
H C R and a continuous Borel probability measure p such that
Vt € R we have p(t + H) =0.
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Possible variations

Definition of shy sets with -hull

Let G be a Polish abelian group, and ' C P(G). We say that a set
S is Haar null with a T-hull if

(Fu)FH eTN)(Vte G)(w(H+t) =0)AS C H).

This family is denoted by Sr.
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Possible variations

Definition of shy sets with -hull

Let G be a Polish abelian group, and ' C P(G). We say that a set
S is Haar null with a T-hull if

(Fu)FH eTN)(Vte G)(w(H+t) =0)AS C H).

This family is denoted by Sr.

In particular, Syajve = Sp(x) and the original definition of Haar
nullness gives Syyug.
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Possible variations

Definition of shy sets with -hull

Let G be a Polish abelian group, and ' C P(G). We say that a set
S is Haar null with a T-hull if

(Fu)FH eTN)(Vte G)(w(H+t) =0)AS C H).

This family is denoted by Sr.

In particular, Snaive = Sp(x) and the original definition of Haar
nullness gives Syyug.
Obviously, Sng - SA% - SZ% C Sum C SP(X)-
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Possible variations

Definition of shy sets with -hull

Let G be a Polish abelian group, and ' C P(G). We say that a set
S is Haar null with a T-hull if

(Fu)FH eTN)(Vte G)(w(H+t) =0)AS C H).

This family is denoted by Sr.

In particular, Snaive = Sp(x) and the original definition of Haar
nullness gives Syyug.

Obviously, Sng - SA% - SZ% C Sum C SP(X)-

If G locally compact then Sg; = Sym.
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Possible variations

Definition of shy sets with -hull

Let G be a Polish abelian group, and ' C P(G). We say that a set
S is Haar null with a T-hull if

(Fu)FH eTN)(Vte G)(w(H+t) =0)AS C H).

This family is denoted by Sr.

In particular, Snaive = Sp(x) and the original definition of Haar
nullness gives Syyug.

Obviously, Sng - SA% - SZ% C Sum C SP(X)-

If G locally compact then Sg; = Sym.

Elekes and Steprans = in R we have

Sng = Sa1 = Ss1 = Sum S Sp(x)-
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Further known results

Def: Sr = {S: (Ju)(3H € N)(Vt € G)((H + t) = 0) A S C H)}.

SI‘I& C SA% C S}:} C Sum ;CH SP(X)-

A positive statement

Theorem. (Solecki, 1996) For every X1 Haar null set there exists
a Haar null Al hull.
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Further known results

Def: Sr = {S: (Ju)(3H € N)(Vt € G)((H + t) = 0) A S C H)}.

SI‘I% C SA% = S}:% C Sﬂ} C Sym ;CH SP(X)-

A positive statement

Theorem. (Solecki, 1996) For every X1 Haar null set there exists
a Haar null Af hull. (<= Sa1 = Ss1).
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Further known results

Def: S = {S: (Ju)(3H € T)(Vt € G)(u(H +t) =0) A S C H)}.
SI‘I% C SA% = S}:% C Sﬂ} C Sym ;CH SP(X)-

A positive statement

Theorem. (Solecki, 1996) For every X1 Haar null set there exists
a Haar null Af hull. (<= Sa1 = Ss1).

v
Cardinal characteristics

Theorem. (Banakh, 2004) (MA) And G is not locally compact
then cof (Sym) > ¢
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Further known results

Def: Sr = {S: (Ju)(3H € N)(Vt € G)((H + t) = 0) A S C H)}.

SI‘I% C SA% = S}:% C SI‘I% ;MA Sum ;CH SP(X)-

A positive statement

Theorem. (Solecki, 1996) For every X1 Haar null set there exists
a Haar null Af hull. (<= Sa1 = Ss1).

Cardinal characteristics
Theorem. (Banakh, 2004) (MA) And G is not locally compact
then cof (Sym) > ¢

= SA% 75 Sum-
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Definability of the counter-examples

I'I% example in L

Theorem. (Z. V.) There exists a MM} set H C Z“ such that H is
Haar null but there is no Z} Haar null set containing it.
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Definability of the counter-examples

I'I% example in L

Theorem. (Z. V.) There exists a MM} set H C Z“ such that H is
Haar null but there is no Z} Haar null set containing it.

Corollary. (V = L) Sp1 # Sp. J
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Definability of the counter-examples

I'I% example in L

Theorem. (Z. V.) There exists a MM} set H C Z“ such that H is
Haar null but there is no Z} Haar null set containing it.

Corollary. (V = L) Sp1 # Sp. J

Proof
Take H = {x : x € Lyx}. Then

v
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Definability of the counter-examples

I'I% example in L

Theorem. (Z. V.) There exists a MM} set H C Z“ such that H is
Haar null but there is no Z} Haar null set containing it.

Corollary. (V = L) Sp1 # Sp. J

Proof
Take H = {x : x € Lyx}. Then

o His I'I} and does not contain a perfect subset
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Definability of the counter-examples

I'I% example in L

Theorem. (Z. V.) There exists a MM} set H C Z“ such that H is
Haar null but there is no Z} Haar null set containing it.

Corollary. (V = L) Sp1 # Sp. J

Proof
Take H = {x : x € Lyx}. Then

o His I'I} and does not contain a perfect subset

@ intersects every <jp-cofinal F € I'I%
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Definability of the counter-examples

I'I% example in L

Theorem. (Z. V.) There exists a MM} set H C Z“ such that H is
Haar null but there is no Z} Haar null set containing it.

Corollary. (V = L) Sp1 # Sp. J

Proof
Take H = {x : x € Lyx}. Then

o His I'I} and does not contain a perfect subset

@ intersects every <jp-cofinal F € I'I%

= enough to prove that every prevalent (co-Haar null) M} is
<p-cofinal.
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Towards Con(Sa: = Sny)

Solecki's Sp1 = Sy

Theorem. (First reflection) Suppose that X is Polish and
® CP(X)isNionXxl If Ac ®N Xl then 3B € &N Al such
that A C B.
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Towards Con(Sa: = Sny)

Solecki's Sp1 = Sy

Theorem. (First reflection) Suppose that X is Polish and

® CP(X)isNionXxl If Ac ®N Xl then 3B € &N Al such
that A C B.

Fix a p# measure on a Polish abelian group G and let

cu(A) =sup{u(A+t):te G}, Ac d, < c,(A)=0.
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Towards Con(Sa: = Sny)
Solecki's Sp1 = Sy

Theorem. (First reflection) Suppose that X is Polish and

® CP(X)isNionXxl If Ac ®N Xl then 3B € &N Al such
that A C B.

Fix a p# measure on a Polish abelian group G and let

cu(A) =sup{u(A+t):te G}, Ac d, < c,(A)=0.

Bounded reflection

Definition. If & C P(X) is a M} on X{ ideal, we say that it
satisfies bounded reflection, if there exists an ordinal v < wy such
that for every B € ® N A} then 3D € ® N MY with B C D.
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Towards Con(Sa: = Sny)
Solecki's Sp1 = Sy

Theorem. (First reflection) Suppose that X is Polish and

® CP(X)isNionXxl If Ac ®N Xl then 3B € &N Al such
that A C B.

Fix a p# measure on a Polish abelian group G and let

cu(A) =sup{u(A+t):te G}, Ac d, < c,(A)=0.

Bounded reflection

Definition. If & C P(X) is a M} on X{ ideal, we say that it
satisfies bounded reflection, if there exists an ordinal v < wy such
that for every B € ® N A} then 3D € ® N NY with B C D.

Preservation of category

Definition. A o-ideal ® C P(X) preserves category if whenever
B C X x Y is Borel then V*V®B(x, y) = V*V*B(x, y).
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Towards Con(Sa: = Sny)

Positive result

Theorem. (Clemens, Zapletal) (Vx(x7 exists)) Suppose that a
o-ideal ® preserves category and M} on X1. Then bounded
reflection implies Mi-reflection (i.e. A€ ® NN} then 3B € o N Al
such that A C B.)

Preservation of measure

Theorem?? Suppose that a o-ideal ® preserves measure and M}
on X1. Then bounded reflection implies Mi-reflection (i.e.
A€ ®N N} then 3B € ® N Al such that AC B.)
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Towards Con(Sa: = Sny)

Proposition. For a fixed Borel measure i the set ®,, is a measure
preserving I'I% on Zi o-ideal.

Corollary

If the previous theorem holds then we have:
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Towards Con(Sa: = Sny)

Proposition. For a fixed Borel measure i the set ®,, is a measure
preserving I'I% on Zi o-ideal.

Corollary

If the previous theorem holds then we have:

Suppose that for every fixed measure i there exists a v < wj such
that every Borel Haar null set with witness p is contained in a I'I?Y
Haar null set with witness u =

Every M} Haar null set is contained in a Borel Haar null set.
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Towards Con(Sa: = Sny)

Definition. Suppose that X is a Hausdorff space. A capacity on
X is a map ¢ : P(X) — [0, o0] such that

@ A C B implies c(A) < ¢(B)

Q@ AyCA C--- = C(An) — C(UA,,)

@ for any compact K C X, ¢(K) < oo and if ¢(K) < r then
there exists an open U C K such that ¢(U) < r.
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Towards Con(Sa: = Sny)

Definition. Suppose that X is a Hausdorff space. A capacity on
X is a map ¢ : P(X) — [0, o0] such that

@ A C B implies c(A) < ¢(B)

Q@ AyCA C--- = C(An) — C(UA,,)

@ for any compact K C X, ¢(K) < oo and if ¢(K) < r then
there exists an open U C K such that ¢(U) < r.

Capacitability
Definition. A set A is c-capacitable if c(A) =sup{c(K): K C A
compact}.
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Towards Con(Sa: = Sny)

Definition. Suppose that X is a Hausdorff space. A capacity on
X is a map ¢ : P(X) — [0, o0] such that
@ A C B implies c(A) < ¢(B)
Q@ AyCA C--- = C(An) — C(UA,,)
@ for any compact K C X, ¢(K) < oo and if ¢(K) < r then
there exists an open U C K such that ¢(U) < r.

Capacitability

Definition. A set A is c-capacitable if c(A) =sup{c(K): K C A
compact}.

Theorem. (Choquet) In a Polish space every X1 set is
c-capacitable for every c capacity.
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Towards Con(Sa: = Sny)

Relation to Haar null sets

Proposition. Let X = Z*. Fix p, there exists a capacity ¢, such
that ¢,(B) = c,(B) = sup{u(B + t) : t € Z“} for every Borel B.
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Towards Con(Sa: = Sny)

Relation to Haar null sets

Proposition. Let X = Z*. Fix p, there exists a capacity ¢, such
that ¢,(B) = c,(B) = sup{u(B + t) : t € Z“} for every Borel B.

v

Corollary

We have obtained again Sp1 = Sy1.
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Towards Con(Sa: = Sny)

Relation to Haar null sets

Proposition. Let X = Z*. Fix p, there exists a capacity ¢, such
that ¢,(B) = c,(B) = sup{u(B + t) : t € Z“} for every Borel B.

v

Corollary

We have obtained again Sp1 = Sy1.

Capacitability of I'I% sets

Proposition. M} sets are not universally capacitable.
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Question. What are the exact relations in the following equation:
_ V=L MA CH
Sng C SA% = 8}:} ; SI'I% ; Sum ; SP(X)?
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Question. What are the exact relations in the following equation:
_ V=L MA CH
Sng C SA% = 8}:} ; SI'I% ; Sum ; SP(X)?

Question. (PD) Does Sg; = Sa1 directly imply Sp1 = Spi? J
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Question. What are the exact relations in the following equation:
_ V=L MA CH
Sng C SA% = 8}:} ; SI'I% ; Sum ; SP(X)?

Question. (PD) Does Sg; = Sa1 directly imply Sp1 = Spi? J

Complementary questions

Question. [s it true that every analytic non-Haar null set contains
a Borel non-Haar null set?
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Thank you!
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