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The original question

Pointwise orderings of functions
Let X be an uncountable Polish space and F a set of functions
f : X → R.

Definition. For f , g ∈ F we say that f < g if for every x ∈ X we
have f (x) ≤ g(x) and there exists an x ∈ X so that f (x) < g(x).

General question
Let (L, <) be an ordering. Does there exist an (order preserving)
embedding (L, <) ↪→ (F , <)? Terminology: we also say that L is
representable in F .
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Known results

Continuous case
Theorem. (Folklore) If F = C(X ,R) then (L, <) representable in
(F , <) if and only if it is embeddable into ([0, 1], <).

In fact, there exist embeddings (C(X ,R), <) ↪→ ([0, 1], <) and
([0, 1], <) ↪→ (C(X ,R), <).

The proof
([0, 1], <) ↪→ (C(X ,R), <) is trivial.
(C(X ,R), <) ↪→ ([0, 1], <): The set of closed sets of a Polish space
Y (denoted by Π0

1(Y )) forms a poset with the strict inclusion.
Clearly, the map f 7→ subgraph(f ) = {(x , y) : y ≤ f (x)} is an
embedding (C(X ,R), <) ↪→ (Π0

1(X × R),⊂).
Now let {Un : n ∈ ω} be a basis of X × R.
Map F ∈ Π0

1(X × R) to
∑

Un∩F 6=∅ 3−n−1.
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Known results

Observe that we did not use the continuity, just that the sets
subgraph(f ) are closed.

Baire class 1 functions
Definition. A function f : X → R is Baire class 1 if it is the
pointwise limit of continuous functions. Notation: B1(X ).

Kuratowski’s theorem
Theorem. (Kuratowski, 60s) ω1 and ω∗1 are not representable in
(B1(X ), <).

Is this a characterisation?
Theorem. (Komjáth, 1990) Consistently no: If (S, <) is a Suslin
line, then (S, <) 6↪→ (B1(X ), <).
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Known results

A non-characterisation result
Theorem. (Elekes, Steprāns, 2006) There exists a linear ordering
(L, <) so that neither ω1 nor ω∗1 is embeddable into L, but
(L, <) 6↪→ (B1(X ), <).

The positive direction
Theorem. (Elekes, Steprāns, 2006) (MA) If |L| < c and neither
ω1 nor ω∗1 is embeddable into (L, <) then (L, <) ↪→ (B1(X ), <).

Remark on Baire class α
Theorem. (Komjáth, 1990) If α > 1 the existence of
ω2 ↪→ (Bα(X ), <) is already independent of ZFC.
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Theorem. (Elekes, Steprāns, 2006) There exists a linear ordering
(L, <) so that neither ω1 nor ω∗1 is embeddable into L, but
(L, <) 6↪→ (B1(X ), <).

The positive direction
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Main question

Question. (Laczkovich, 1984) Which are the linear orderings
representable by Baire class 1 functions?

Main Theorem. (Elekes, V.) There exists a universal linear
ordering representable by Baire class 1 functions.

The universal ordering: ([0, 1]<ω1
sd , <altlex )

We denote the set of strictly monotone decreasing transfinite
sequences of reals in [0, 1] with last element 0 by [0, 1]<ω1

sd .
Let x̄ = (xα)α≤ξ, x̄ ′ = (x ′α)α≤ξ′ ∈ [0, 1]<ω1

sd and let δ be minimal so
that xδ 6= x ′δ. We say that x̄ <altlex x̄ ′ ⇐⇒

xδ < x ′δ if δ is even or xδ > x ′δ if δ is odd.

In fact, there exist (B1(X ), <) ↪→ ([0, 1]<ω1
sd , <altlex ) and

([0, 1]<ω1
sd , <altlex ) ↪→ (B1(X ), <).
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(B1(X ), <) ↪→ ([0, 1]<ω1
sd , <altlex)

Ambiguous sets
Definition. A set A ⊂ X is called ambiguous if it is Fσ and Gδ.
The collection of ambigous subsets of X is denoted by ∆0

2(X ).

Remark
A characteristic function χA is Baire-1 if and only if A ∈ ∆0

2.
However, for a Baire-1 function f the sets {(x , y) : y ≤ f (x)} and
{(x , y) : y < f (x)} are typically not ambigous.
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(B1(X ), <) ↪→ ([0, 1]<ω1
sd , <altlex)

Theorem. (Hausdorff, Kuratowski) A set A is ∆0
2 if and only if

there exists a strictly decreasing continuous transfinite sequence of
closed sets (Fβ)β<α for some α < ω1 so that

A =
⋃

γ<α,γ∈Lim
n∈ω

(Fγ+2n \ Fγ+2n+1).

Let A ⊂ X be arbitrary and F ⊂ X closed. Let ∂F (A) be
A ∩ F ∩ Ac ∩ F (= the boundary of A in F ).

Now let F0 = X and define for γ, γ′ limit and n ∈ ω the closed set
Fγ+n by induction:

Fγ+2n+2 = ∂Fγ+2n (A), Fγ+2n+1 = Ac ∩ Fγ+2n,

Fγ =
⋂

γ′+2n<γ
Fγ′+2n.
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(B1(X ), <) ↪→ ([0, 1]<ω1
sd , <altlex)

Proposition. (Elekes, V.) There exists a function
Ψ : ∆0

2(X )→ Π0
1(X )<ω1 with Ψ(A) = (Fβ)β<α with the following

properties:
1 (Fβ)β<α is strictly decreasing and

A =
⋃

γ<α,γ∈Lim
n∈ω

(Fγ+2n \ Fγ+2n+1).

2 (Weak preservation of inclusion) If A $ A′ and
Ψ(A′) = (F ′β)β<α′ and δ is minimal so that Fδ 6= F ′δ then

Fδ $ F ′δ if δ is even

and
Fδ % F ′δ if δ is odd.
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(B1(X ), <) ↪→ ([0, 1]<ω1
sd , <altlex)

Recall the definition of the universal ordering:
We denote the set of strictly monotone decreasing continuous
transfinite sequences of reals in [0, 1] by [0, 1]<ω1

sd .
Let x̄ = (xβ)β<α, x̄ ′ = (x ′β)β<α′ ∈ [0, 1]<ω1

sd and let δ be minimal so
that xδ 6= x ′δ. We say that x̄ <altlex x̄ ′ ⇐⇒

xδ < x ′δ if δ is even or xδ > x ′δ if δ is odd.

Using the embedding (Π0
1(X ),⊂) ↪→ ([0, 1], <) we obtain:

Concluding result
Theorem. (∆0

2(X ),⊂) ↪→ ([0, 1]ω1
sd , <altlex ).
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(B1(X ), <) ↪→ ([0, 1]<ω1
sd , <altlex)

Hausdorff analysis for Baire class 1 functions
Theorem. (Kechris, Louveau, 1990) Suppose that f is a bounded
nonnegative Baire class 1 function. Then there exists a transfinite,
strictly decreasing sequence of nonnegative, upper semi-continuous
functions (fβ)β<α so that

f =
∑
β<α

∗
(−1)βfβ.

Where
∑∗ is the generalized alternating sum.

Embedding for Baire class 1
Theorem. (B1(X ), <) ↪→ ([0, 1]<ω1

sd , <altlex ).
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The other direction: ([0, 1]<ω1
sd , <altlex) ↪→ (B1(X ), <)

Theorem. (Elekes, V.) The converse is also true, in fact
([0, 1]<ω1

sd , <altlex ) ↪→ (∆0
2(X ),⊂).

About the proof
For X and X ′ uncountable σ-compact spaces it was proved by
Elekes that (B1(X ), <) ↪→ (B1(X ′), <).
So it was enough to prove that
([0, 1]<ω1

sd , <altlex ) ↪→ (∆0
2(K([0, 1]2)),⊂).
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Applications

Kuratowski: ω1 and ω∗1 are not representable.

Elekes-Steprāns: under MA every order of cardinality less then
c is representable if and only if ω1 or ω∗1 is not embeddable
into it.
Komjáth: a forcing-free proof of the non-representability of
Suslin lines.
The linear orders representable by Baire class 1 functions are
the same in all Polish spaces.
Every linearly ordered set which is representable is also
representable by characteristic functions, in fact
(B1(X ), <) ↪→ (∆0

2(X ),⊂).
Lexicographical countable products of representable linearly
ordered sets are also representable.
Completions of a representable linearly ordered sets are not
necessarily representable.
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Elekes-Steprāns: under MA every order of cardinality less then
c is representable if and only if ω1 or ω∗1 is not embeddable
into it.
Komjáth: a forcing-free proof of the non-representability of
Suslin lines.
The linear orders representable by Baire class 1 functions are
the same in all Polish spaces.
Every linearly ordered set which is representable is also
representable by characteristic functions, in fact
(B1(X ), <) ↪→ (∆0

2(X ),⊂).

Lexicographical countable products of representable linearly
ordered sets are also representable.
Completions of a representable linearly ordered sets are not
necessarily representable.

Zoltán Vidnyánszky Order types representable by Baire class 1 functions



Applications

Kuratowski: ω1 and ω∗1 are not representable.
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Open problems

Question. What can we say about linear orderings representable in
higher Baire classes in terms of universal orderings? What if we
consider the poset (Σ0

α(X ),⊂) for some α ≥ 2?

Question. Does there exist an embedding
(B1(X ), <) ↪→ (∆0

2(X ),⊂) so that (B1(X ), <) is (as a poset)
isomorphic to its image?

Question. Does there exist a universal linearly ordered set if X is
only separable metrizable?
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Thank you for your attention!

Zoltán Vidnyánszky Order types representable by Baire class 1 functions


