◼ G. Damásdi, B. Keszegh, D. Pálvölgyi, Karamjeet Singh: The complexity of recognizing ABAB-free hypergraphs, arXiv
◼ B. Keszegh, D. Pálvölgyi: On dual-ABAB-free and related hypergraphs, arXiv
◼ E. Ackerman, G. Damásdi, B. Keszegh, R. Pinchasi, R. Raffay: On the number of digons in arrangements of pairwise intersecting circles, Proceedings of SoCG 2024, LIPIcs 293 (2024), 3:1-3:14, arXiv
◼ E. Ackerman, B. Keszegh: On the number of tangencies among 1-intersecting x-monotone curves, European Journal of Combinatorics 118 (2024), https://doi.org/10.1016/j.ejc.2024.103929
Conference version: E. Ackerman, B. Keszegh: On the number of tangencies among 1-intersecting curves,
Proceedings of EuroComb 2023, Masaryk University Press (2023), 4-11., arXiv
◼ P. Ágoston, G. Damásdi, B. Keszegh, D. Pálvölgyi: Orientation of good covers, Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications Proceedings (2023), 249-257., arXiv
◼ P. Ágoston, G. Damásdi, B. Keszegh, D. Pálvölgyi: Orientation of convex sets, Electronic Journal of Combinatorics 31(34} (2024), P4.36 1-26.; Proceedings of EuroCG 2022 (2022), 62:1-62:8., arXiv
◼ B. Keszegh: A new discrete theory of pseudoconvexity, Discrete Mathematics and Theoretical Computer Science (DMTCS) 25(1) (2023), dmtcs:9255, 1-35.; Proceedings of EuroCG 2022 (2022), 15:1-15:6., arXiv
◼ B. Keszegh, D. Pálvölgyi: The Number of Tangencies Between Two Families of Curves, Combinatorica 43 (2023), 939-952., arXiv
◼ Ch. Keller, B. Keszegh, D. Pálvölgyi: On the Number of Hyperedges in the Hypergraph of Lines and Pseudo-discs, Electronic Journal of Combinatorics, 29(3) (2022), P3.25 1-9., arXiv
◼ B. Keszegh: Discrete Helly-type theorems for pseudohalfplanes, European Journal of Combinatorics 101 (2022), 103469; Proceedings of EuroComb 2021, Trends in Mathematics - Research Perspectives CRM Barcelona Vol.14 (2021), 359-365., arXiv
◼ E. Ackerman, B. Keszegh, D. Pálvölgyi: On tangencies among planar curves with an application to coloring L-shapes, European Journal of Combinatorics (Special issue dedicated to EuroComb 2021) 121 (2024), 103837; Proceedings of EuroComb 2021, Trends in Mathematics - Research Perspectives CRM Barcelona Vol.14 (2021), 123-128. arXiv
◼ E. Ackerman, B. Keszegh, D. Pálvölgyi: Coloring Hypergraphs Defined by Stabbed Pseudo-Disks and ABAB-Free Hypergraphs, SIAM J. on Discrete Math 34(4) (2020), 2250-2269.; Proceedings of EuroComb 2019, Acta Mathematica Universitatis Comenianae 88(3) (2019), 363-370., arXiv
◼ E. Ackerman, B. Keszegh, D. Pálvölgyi: Coloring Delaunay-Edges and their Generalizations, Computational Geometry: Theory and Applications 96 (2021), 101745, arXiv
◼ B. Keszegh: Coloring intersection hypergraphs of pseudo-disks, Discrete and Computational Geometry 64 (2020), 942-964; Proceedings of SoCG 2018, LIPIcs 99 (2018), 52:1-52:15., arXiv
◼ B. Keszegh, D. Pálvölgyi: Proper Coloring of Geometric Hypergraphs, Discrete and Computational Geometry 62(3) (2019), 674-689.; Proceedings of SoCG 2017, LIPIcs 77 (2017), 47:1-47:15., arXiv
◼ E. Ackerman, B. Keszegh, M. Vizer: Coloring points with respect to squares, Discrete and Computational Geometry, 58(4) (2017), 757-784.; Proceedings of SoCG 2016, LIPIcs 51 (2016), 5:1-5:16., arXiv
◼ B. Keszegh, D. Pálvölgyi: More on Decomposing Coverings by Octants, Journal of Computational Geometry 6(1) (2015), 300-315., arXiv
◼ B. Keszegh, D. Pálvölgyi: An abstract approach to polychromatic coloring: shallow hitting sets in ABA-free hypergraphs and pseudohalfplanes, Journal of Computational Geometry 10(1) (2019), 1-26.; Proceedings of Graph-Theoretic Concepts in Computer Science - WG 2015, Lecture Notes in Computer Science 9224 (2016), 266-280., arXiv
◼ B. Keszegh, D. Pálvölgyi: Convex Polygons are Self-Coverable, Discrete and Computational Geometry 51(4) (2014), 885-895., arXiv
◼ B. Keszegh, D. Pálvölgyi: Octants are Cover Decomposable into Many Coverings, Computational Geometry: Theory and Applications 47(5) (2014), 585-588., arXiv
◼ B. Keszegh, N. Lemons and D. Pálvölgyi: Online and quasi-online colorings of wedges and intervals, Order 33(3) (2016), 389-409.; SOFSEM 2013: Theory and Practice of Computer Science, Lecture Notes in Computer Science 7741 (2013), 292-306., arXiv
◼ B. Keszegh, D. Pálvölgyi: Octants are Cover Decomposable, Discrete and Computational Geometry, 47(3), Springer (2012) 598-609.; EuroComb 2011 Proceedings, Electronic Notes in Discrete Mathematics 38 (2011), 499-504., arXiv
◼ B. Keszegh: Combinatorial and computational problems about points in the plane (PhD Dissertation, supervisors: E. Győri and G. Tardos), 2009, Central European Univesity, Department of Mathematics and its Applications, pdf
◼ D. Gerbner, B. Keszegh, N. Lemons, C. Palmer, B. Patkós and D. Pálvölgyi: Polychromatic colorings of arbitrary rectangular partitions, Discrete Mathematics, 310(1), Elsevier (2010), 21-30.; Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (2009), pdf
◼ B. Keszegh: Box-respecting Colorings of n-dimensional Guillotine-Partitions, Discrete Mathematics, 311(8-9), Elsevier (2011), 756-760. Conference version: Polychromatic colorings of n-dimensional guillotine-partitions, The 14th Annual International Computing and Combinatorics Conference (COCOON08) Proceedings, 110-118., pdf
◼ B. Keszegh: Coloring half-planes and bottomless rectangles, Computational Geometry: Theory and Applications, 45(9), Elsevier (2012), 495–507., arXiv
Conference version: Weak conflict free colorings of point sets and simple regions, The 19th Canadian Conference on Computational Geometry (CCCG07), Proceedings (2007), 97-100., pdf
◼ V. Bošković, B. Keszegh: Saturation of edge-ordered graphs, arXiv
◼ B. Keszegh: Coloring directed hypergraphs, Discrete Mathematics 346(9) (2023), 113526, arXiv
◼ V. Bošković, B. Keszegh: Saturation of Ordered Graphs, SIAM J. on Discrete Math 37(2) (2023), 1118-1141., arXiv
◼ R. Fulek, B. Keszegh: Saturation problems about forbidden 0-1 submatrices, SIAM J. on Discrete Math 35(3) (2021), 1964-1977., arXiv
◼ G. Damásdi, B. Keszegh, D. Malec, C. Tompkins, Zh. Wang, O. Zamora: Saturation problems in the Ramsey theory of graphs, posets and point sets, European Journal of Combinatorics 95 (2021), 103321, arXiv
◼ B. Keszegh, N. Lemons, R. R. Martin, D. Pálvölgyi, B. Patkós: Induced and non-induced poset saturation problems, Journal of Combinatorial Theory, Series A 187 (2021), 105497 arXiv
◼ G. Damásdi, S. Felsner, A. Girão, B. Keszegh, D. Lewis, D. T. Nagy, T. Ueckerdt: On Covering Numbers, Young Diagrams, and the Local Dimension of Posets, SIAM J. on Discrete Math 35(2) (2021), 915-927., arXiv
◼ D. Gerbner, B. Keszegh, A. Methuku, D. T. Nagy, B. Patkós, C. Tompkins, Ch. Xiao: Set systems related to a house allocation problem, Discrete Mathematics 343(7) (2020), 111886, arXiv
◼ B. Keszegh: Two-Coloring Triples such that in Each Color Class Every Element is Missed at Least Once, Graphs and Combinatorics 36(6) (2020), 1783-1795., arXiv
◼ B. Keszegh, X. Zhu: A note about online nonrepetitive coloring k-trees, Discrete Applied Mathematics 285 (2020), 108-112., arXiv
◼ D. Gerbner, B. Keszegh, A. Methuku, B. Patkós, M. Vizer: An improvement on the maximum number of k-Dominating Independent Sets, Journal of Graph Theory, 91(1) (2019), 88-97., arXiv
◼ D. Gerbner, B. Keszegh, B. Patkós: Generalized forbidden subposet problems, Order 37 (2020), 389-410., arXiv
◼ D. Gerbner, B. Keszegh, C. Palmer, B. Patkós: On the number of cycles in a graph with restricted cycle lengths, SIAM J. on Discrete Math., 32(1) (2018), 266-279., arXiv
◼ D. Gerbner, B. Keszegh, G. Mészáros, B. Patkós and M. Vizer: Line Percolation in Finite Projective Planes, SIAM J. on Discrete Math., 32(2) (2018), 864-881., arXiv
◼ E. Győri, B. Keszegh: On the number of edge-disjoint triangles in K4-free graphs, Combinatorica, 37(6) (2017), 1113-1124.; Proceedings of Eurocomb 2017, Electronic Notes in Discrete Mathematics 61 (2017), 557-560., arXiv
◼ B. Keszegh, X. Zhu: Choosability and paintability of the lexicographic product of graphs, Discrete Applied Mathematics 223 (2017), 84-90., arXiv
◼ A. Asinowski, B. Keszegh, T. Miltzow: Counting Houses of Pareto Optimal Matchings in the House Allocation Problem, Discrete Mathematics 339(12) (2016), 2919-2932.; Seventh International Conference on Fun with Algorithms (FUN 2014), Lecture Notes in Computer Science 8496 (2014), 301-312., arXiv
◼ D. Gerbner, B. Keszegh, C. Palmer, D. Pálvölgyi: Topological orderings of weighted directed acyclic graphs, Information Processing Letters 116(9) (2016), 564-568., arXiv
◼ B. Keszegh, B. Patkós and X. Zhu: Nonrepetitive colorings of lexicographic product of paths and other graphs, Discrete Mathematics and Theoretical Computer Science (DMTCS) 16 (2), PRIMA special issue (2014), 97-110., arXiv
◼ D. Gerbner, B. Keszegh, N. Lemons, C. Palmer, B. Patkós and D. Pálvölgyi: Saturating Sperner families, Graphs and Combinatorics 29(5) (2012), 1355-1364.; Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications Proceedings (2011), 341-350., arXiv
◼ P. Cheilaris, B. Keszegh, and D. Pálvölgyi: Unique-maximum and conflict-free colorings for hypergraphs and tree graphs, SIAM J. on Discrete Math., 27(4) (2013), 1775–1787; Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications Proceedings (2011), 207-216.; SOFSEM 2012, 190-201., arXiv
◼ D. Gerbner, B. Keszegh, and C. Palmer: Generalizations of the Tree Packing Conjecture, Discussiones Mathematicae Graph Theory 32 (3) (2012), 569-582.; 8th French Combinatorial Conference, Paris (2010), arXiv
◼ B. Keszegh: On linear forbidden submatrices, Journal of Combinatorial Theory, Series A 116, Elsevier (2009), 232-241., pdf
◼ B. Keszegh: Forbidden submatrices in 0-1 matrices (Master's Thesis, supervisor: G. Tardos), 2005, Eötvös Loránd University, Budapest, Faculty of Science, pdf
◼ E. Ackerman, B. Keszegh: The maximum size of adjacency-crossing graphs, arXiv
◼ B. Keszegh, D. Pálvölgyi: Aligned plane drawings of the generalized Delaunay-graphs for pseudo-disks, Journal of Computational Geometry 11(1) (2020), 354-370., arXiv
◼ E. Ackerman, B. Keszegh, M. Vizer: On the size of planarly connected crossing graphs, Journal of Graph Algorithms and Applications, Special Issue on Graph Drawing Beyond Planarity 22(1) (2018), 11-22.; Proceedings of Graph Drawing 2016, Lecture Notes in Computer Science 9801 (2016), 311-320., arXiv
◼ B. Keszegh, J. Pach and D. Pálvölgyi: Drawing planar graphs of bounded degree with few slopes, SIAM J. on Discrete Math., 27(2) (2013), 1171–1183.; Graph Drawing 2010, Lecture Notes in Computer Science 6502, Springer (2011), 293-304., arXiv
◼ K. Arikushi, R. Fulek, B. Keszegh, F. Moric and Cs. D. Tóth: Graphs that Admit Right Angle Crossing Drawings, Computational Geometry: Theory and Applications (2012), 45 (4), 169-177.; 36th International Workshop on Graph Theoretic Concepts in Computer Science, Zarós (2010), Lecture Notes in Computer Science 6410, Springer (2010), 135-146., arXiv
◼ B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth: Cubic graphs have bounded slope parameter, Journal of Graph Algorithms and Applications 14(1), (2010) 5-17.; Graph Drawing 2008, pdf
◼ B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth: Drawing cubic graphs with at most five slopes, Computational Geometry: Theory and Applications 40(2), Elsevier (2008), 138-147.; Graph Drawing 2006, pdf
◼ B. Keszegh, D. Simon: Convex Hull Thrackles, arXiv
◼ E. Ackerman, B. Keszegh, G. Rote: An almost optimal bound on the number of intersections of two simple polygons, Discrete and Computational Geometry 68 (2022), 1049-1077.; Proceedings of SoCG 2020, LIPIcs 164 (2020), 1:1-1:18., arXiv
◼ B. Keszegh: Covering Paths and Trees for Planar Grids, Geombinatorics Quarterly 24(1) (2014), 5-10.; Proceedings of EuroCG 2014 (2014), arXiv
◼ A. Dumitrescu, D. Gerbner, B. Keszegh, Cs. D. Tóth: Covering Paths for Planar Point Sets, Discrete and Computational Geometry 51(2) (2014), 462-484.; Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications Proceedings (2013), arXiv
◼ R. Fulek, B. Keszegh, F. Moric and I. Uljarevic: On polygons excluding point sets, Graphs and Combinatorics, 29(6), 1741-1753. (2013); The 22th Canadian Conference on Computational Geometry (CCCG10) Proceedings (2010), 273-276., arXiv
◼ E. Ackerman and O. Aichholzer, B. Keszegh: Improved upper bounds on the reflexivity of point sets, Computational Geometry: Theory and Applications, 42(3), Elsevier (2009), 241-249.; The 19th Canadian Conference on Computational Geometry (CCCG07) Proceedings, 29-32., pdf
◼ S. Bhore, B. Keszegh, A. Kupavskii, H. Le, A. Louvet, D. Pálvölgyi, C. D. Tóth: Spanners in Planar Domains via Steiner Spanners and non-Steiner Tree Covers, arXiv
◼ R. Ben-Avraham, M. Henze, R. Jaume, B. Keszegh, O. E. Raz, M. Sharir, I. Tubis: Partial-Matching RMS Distance Under Translation: Combinatorics and Algorithms, Algorithmica, Algorithmica 80(8) (2018), 2400-2421.; 22nd European Symposium on Algorithms - ESA 2014, Lecture Notes in Computer Science 8737 (2014), 100-111., arXiv
Preliminary version: M. Henze, R. Jaume, B. Keszegh: On the complexity of the partial least-squares matching Voronoi diagram, Proceedings of EuroCG 2013 (2013), 193-196.
◼ D. Gerbner, B. Keszegh, D. T. Nagy, K. Nagy, D. Pálvölgyi, B. Patkós, G. Wiener: Query complexity of Boolean functions on the middle slice of the cube, Discrete Applied Mathematics, to appear, arXiv
◼ D. Gerbner, B. Keszegh, K. Nagy, B. Patkós, G. Wiener: Cooperation in Combinatorial Search, Optimization Letters, https://doi.org/10.1007/s11590-024-02120-1, arXiv
◼ D. Gerbner, B. Keszegh, D. Lenger, D. T. Nagy, D. Pálvölgyi, B. Patkós, M. Vizer, G. Wiener: On graphs that contain exactly k copies of a subgraph, and a related problem in search theory, Discrete Applied Mathematics 341 (2023), 196-203., arXiv
◼ G. Damásdi, D. Gerbner, G.O.H. Katona, B. Keszegh, D. Lenger, A. Methuku, D. T. Nagy, D. Pálvölgyi, B. Patkós, M. Vizer, G. Wiener: Adaptive majority problems for restricted query graphs and for weighted sets, Discrete Applied Mathematics 288 (2021), 235-245., Proceedings of EuroComb 2019, Acta Mathematica Universitatis Comenianae 88(3) (2019), 601-609., arXiv
◼ D. Gerbner, B. Keszegh, D. Pálvölgyi, B. Patkós, G. Wiener and M. Vizer: Finding a non-minority ball with majority answers, Discrete Applied Mathematics, 219 (2017), 18-31.
Conference version: D. Gerbner, B. Keszegh, D. Pálvölgyi, B. Patkós, G. Wiener and M. Vizer: Finding a majority ball with majority answers, Proceedings of Eurocomb 2015, Electronic Notes in Discrete Mathematics 49 (2015), 345-351., arXiv
◼ F. Cicalese, B. Keszegh, B. Lidicky, D. Pálvölgyi, T. Valla: On the Tree Search Problem with Non-uniform Costs, Theoretical Computer Science 647(27) (2016), 22-32.; Proceedings of Graph-Theoretic Concepts in Computer Science - WG 2015, Lecture Notes in Computer Science 9224 (2016), 90-102., arXiv
◼ D. Gerbner, B. Keszegh, D. Pálvölgyi, G. Rote, G. Wiener: Search for the end of a path in the d-dimensional grid and in other graphs, Ars Mathematica Contemporanea, 12(2) (2017), 301-314., arXiv
◼ D. Gerbner, B. Keszegh: Path-search in a pyramid and in other graphs, Journal of Statistical Theory and Practice 6(2), (2012), 303-314.; ZiF Workshop Search Methodologies II, Bielefeld (2010), arXiv
◼ D. Gerbner, B. Keszegh, D. Pálvölgyi and G. Wiener: Density-based group testing, In: Information Theory, Combinatorics, and Search Theory - In Memory of Rudolf Ahlswede, Lecture Notes in Computer Science 7777 (2013), 543-556.
Conference version: Search with density tests, Coimbra Meeting on 0-1 Matrix Theory and Related, Coimbra (2010); ZiF Workshop Search Methodologies II, Bielefeld (2010), arXiv